Strategic challenges in the global control of high pathogenicity avian influenza

D.E. Swayne* (1, 2), L.D. Sims (3), I. Brown (1, 4), T. Harder (1, 5), A. Stegeman (1, 6), C. Abolnik (1, 7), M. Delgado (8), L. Awada (8), G. Pavade (8) & G. Torres (8)

(1) World Organisation for Animal Health (WOAH)/Food and Agriculture Organization of the United Nations (FAO) Network of Expertise on Animal Influenza (OFFLU), 12 rue de Prony, 75017 Paris, France

(2) Birdflu Veterinarian, Watkinsville, GA 30677, United States of America

(3) Asia Pacific Veterinary Information Services, 23A Wilson Ave, Montmorency, Victoria 3094, Australia

(4) Animal and Plant Health Agency–Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom

(5) Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald–Insel Riems, Germany

(6) Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands

(7) Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa

(8) World Organisation for Animal Health, 12 rue de Prony, 75017 Paris, France

*Corresponding author: birdfluve@gmail.com

Summary

H5Nx goose/Guangdong Eurasian lineage high pathogenicity avian influenza (HPAI) viruses have been the main strains detected globally since 2005 and have spread around the world causing a panzootic that has spanned six continents with continual threat to not only wild and captive birds and poultry, but also to wild, captive and domestic mammals and humans. Its ecology and epidemiology, especially the 2.3.4.4b clade, has changed with over 489 species of birds infected, spreading the virus over migratory routes, resulting in death of many birds, including endangered species, and serving as a
source for transmission to poultry and mammals. Improving surveillance and sharing of HPAI virus sequences, metadata and viruses across veterinary, public health, wildlife and environment sectors is needed to elucidate the complex population dynamics of the infections, crucial to addressing this complex One Health issue. The development of appropriate mitigation strategies or changes in husbandry, production and selling practices can reduce the risk of introduction of the virus into farms, its amplification and viral evolution, and any spill-back to wild birds. The approaches to prevention and control of HPAI in countries where these 2.3.4.4b viruses remain entrenched in poultry or places at risk of virus introduction via wild bird populations involve measures to reduce the effects of the disease in poultry (including enhanced farm biosecurity, vaccination, zoning and compartmentalisation). Their uptake reflects the difficulties encountered in relying solely on biosecurity for disease prevention and stamping-out alone for virus control and elimination. The Terrestrial Animal Health Code allows use of vaccination of poultry under specific conditions and without negatively impacting HPAI-free status if appropriate surveillance is conducted, thus supporting safe trade in poultry and poultry products. Nevertheless, concerns regarding loss of valuable export markets still interfere with greater utilisation of vaccination.

Keywords

Introduction
Avian influenza (AI) viruses are classified, based on the surface glycoproteins, into 16 hemagglutinin (H1-16) and 9 neuraminidase (N1-9) subtypes [1]. In addition, AI viruses are categorised into two pathotypes, low pathogenicity (LP) and high pathogenicity (HP), based on in vivo tests in chickens (intravenous pathogenicity index [IVPI] greater than 1.2) or detection of the genetic correlates for pathogenicity at the proteolytic cleavage site of the hemagglutinin [1,2]. To date, all H1-H4, H6 and H8-H16 viruses have been LPAI while H5 and H7 can be either LPAI or HPAI with HPAI viruses arising by mutation of the gene segment coding for hemagglutinin of LPAI viruses, usually following replication in chicken or turkey hosts. An infection with HPAI virus in poultry, wild birds and non-poultry domestic birds is notifiable to the World Organisation for Animal Health (WOAH) [3]. LPAI viruses that have proven natural transmission to humans with severe consequences or those causing an unexpected increase in virulence in poultry are also reportable to WOAH. In addition, LPAI viruses in wild birds can be reported on a voluntary
basis, through the voluntary report on non-WOAH-listed diseases in wildlife [1,4]. Furthermore, members should not impose bans on international trade of poultry commodities when notified of HPAI in wild birds or non-poultry.

Since 1959, 45 distinct H5 and H7 hemagglutinin HPAI virus lineages have been identified [5-7]. Between 2005–2023 (as of 30 August), H5 and H7 HPAI have been notified to WOAH by 122 Members and non-Members across the WOAH regions of Africa, Asia and the Pacific, Americas, Europe and Middle East (Figs 1–3). A total of 40,372 outbreaks were reported (poultry\(^1\), non-poultry domestic birds and wild birds), resulting in over 31 million reported domestic and wild bird deaths, and 451 million domestic birds culled. H5Nx goose/Guangdong (Gs/GD) Eurasian lineage HPAI viruses, which emerged and have circulated as HPAI viruses since 1996, were the main strains reported.

Wild aquatic birds serve as the genetic reservoirs of all LPAI viruses with occasional transfer of these viruses to poultry with adaptation and onward spread within poultry populations [8]. However, for certain LPAI virus lineages, poultry must be considered the main reservoir (e.g. H9N2 Eurasian lineage viruses in much of Asia, Middle East and some African countries). Historically, wild aquatic birds have not had significant involvement in epidemiology of HPAI, but this changed with the emergence of the H5Nx Gs/GD Eurasian lineage. The H5Nx Gs/GD virus has genetically diversified through mutations to form multiple hemagglutinin genetic clades and subclades. Furthermore, Gs/GD viruses have been highly active in reassortment processes with various LPAI viruses. This has led to the emergence of hundreds of different genotypes, each having

\(^1\) For the purpose of the Terrestrial Animal Health Code (2022) ‘poultry’ refers to all birds reared or kept in captivity for the production of any commercial animal products or for breeding for this purpose, fighting cocks used for any purpose, and all birds used for restocking supplies of game or for breeding for this purpose, until they are released from captivity. Birds that are kept in a single household, the product of which are used within the same household exclusively, are not considered poultry, provided that they have no direct or indirect contact with poultry or poultry facilities. Birds that are kept in captivity for other reasons, including those that are kept for shows, racing, exhibitions, zoological collections and competitions, and for breeding or selling for these purposes, as well as pet birds, are not considered poultry, provided that they have no direct or indirect contact with poultry or poultry facilities.
unique biological features including, for some genotypes at least, increased fitness for a particular domestic or wild bird host species or ecosystem.

In 2020, H5N8 2.3.4.4b clade viruses re-emerged after initial incursions in 2016 and spread from central Asia to Europe, eastern Asia, Middle East and Africa (Fig. 4). After reassorting in Europe and crossing the north Atlantic, the H5N1 2.3.4.4b virus was detected in Newfoundland, followed by extensive outbreaks during winter and spring 2022 in Canada and the United States of America. In late 2022, the virus moved into Mexico and Central and northern South America, and in winter and spring 2023 down the Pacific coast, inland and up the Atlantic coast of South America. In late 2023, the virus was detected in wild birds in the sub-Antarctic South Georgia. In multiple geographic locations, the virus has caused extensive infections in diverse species of wild and captive aquatic and non-aquatic birds, and in poultry and other domestic birds, with spill-over infections in wild mammals, farmed mink and foxes, occasionally domestic cats and dogs and mammals in zoological collections, and sporadic human infections.

Challenges to HPAI control in the diverse poultry industries

The HPAI virus is generally highly transmissible, causing severe disease with high mortality in unvaccinated galliform poultry (chickens, turkey, quail, etc.), irrespective of the production system [1,4] but Gs/GD virus can also cause subclinical infection in domestic ducks. Flocks of infected domestic ducks may have low to no mortality but serve as a local reservoir for virus replication, shedding, environmental contamination and spread to galliform poultry and potentially re-exposure and infection of wild birds. Understanding poultry value chains is essential to support the development of effective prevention and control strategies. The design and implementation of a farm or premise biosecurity plan tailored to the different risk pathways is the principal mitigation strategy to prevent the introduction of the HPAI virus among a naïve population from affected domestic birds or, in relation to the H5Nx Gs/GD Eurasian HPAI virus, from wild bird carriers and their contamination of surrounding environments. Since 1996, the Gs/GD Eurasian lineage has produced multiple intercontinental waves of transmission via wild birds, the largest caused by 2.3.4.4b clade viruses, reported in over 489 wild, captive and domestic bird species with varying outcomes ranging from asymptomatic infections to individual bird mortality to massive die-offs in breeding colonies of specific bird species, thus negatively impacting avian biodiversity [9]. The current panzootic has demonstrated that, for certain production systems (e.g. turkey, chicken layer and foie gras production), biosecurity measures alone do not prevent all incursions of clade
2.3.4.4b viruses and other methods to prevent transmission in flocks are warranted including vaccination.

Key changes driving the 2.3.4.4b Gs/GD Eurasian lineage HPAI panzootic

Ecological and epidemiological changes in wild birds and mammals

It became apparent that wild birds could transmit Gs/GD HPAI viruses over long distances when cases of HPAI occurred in Japan and the Republic of Korea in 2003–2004 [10-12]. Subsequent transregional and/or transcontinental spread of the Gs/GD HPAI by wild birds occurred during five time periods (2005–2008 [clade 2.2], 2009–2010 [clade 2.3.2.1], 2014–2015 [clades 2.3.4.4 and 2.3.2.1c], 2016–2017 and 2020–2023 [both involving clade 2.3.4.4b]) [13]. Prior to the 2020 re-emergence of clade 2.3.4.4b viruses, infection in wild birds did not persist.

The most recent series of wild bird HPAI cases (clade 2.3.4.4b, October 2020–August 2023) has had the widest geographic spread with 101,817 wild bird cases (many associated with mass mortality events) in over 76 countries and territories across Africa, Americas, Antarctica, Asia, Europe and Middle East (Fig. 5); a historically unprecedented occurrence. This virus clade is highly infectious for domestic and wild ducks, requiring only small infectious virus doses with subsequent virus shedding exceeding 14 days [14,15]. This ecological change has led to the 2.3.4.4b clade being broadly adapted to birds and becoming established in some wild aquatic bird populations with spill-over into scavenger and predatory birds, and wild mammals [16]. Thus, infected migratory aquatic birds serve as a vector of this virus, triggering transmission to outdoor reared domestic birds or indirectly disseminating the virus through breaches in biosecurity from contaminated environments outside of poultry barns. Wild aquatic birds have introduced the HPAI virus to indigenous populations of wild bird species with independent maintenance and contribution to further virus diversity. Furthermore, mass mortality events have been reported for many wild aquatic and non-aquatic birds species such as common cranes (*Grus grus*) in Israel [17]; African penguins (*Spheniscus demersus*) and Cape cormorants (*Phalacrocorax capensis*) in southern Africa [18]; Peruvian pelicans (*Pelecanus thagus*) and Brown Boobies (*Sula leucogaster*) in South America [19]; Sandwich terns (*Thalasseus sandvicensis*) in the Netherlands [20]; Great skuas (*Stercorarius skua*) and Northern Gannets (*Morus bassanus*) in Great Britain [21], Turkey vultures (*Cathartes aura*) and black vultures (*Coragyps atratus*) in the US [22], and Brown skuas (*Stercorarius antarcticus*) on South Georgia Island [23]. Such large
mortality events have had a negative impact on wild bird populations, changing the diversity of species in critical ecosystems, and further endangering threatened avian species.

Increasing numbers of clade 2.3.4.4b virus infections are being reported in wild and captive mammals including 37 species of terrestrial carnivores scavenging infected wild birds such as red foxes (*Vulpes vulpes*), skunks (*Mephitis mephitis*), common raccoon (*Procyon lotor*), mountain lion (*Puma concolor*), and various bears, and in 12 species of sea mammals including 164 harbor seals (*Phoca vitulina*) and over 10,000 sea lions (*Otaria flavescens*) within Europe and the Americas [9,24,25]. In October 2022, outbreaks of 2.3.4.4b clade occurred in farmed mink in Spain [26], and in July 2023 in foxes, minks and raccoon dogs on 25 farms in Finland [27]. Furthermore, clustered cases in domestic cats in Poland and South Korea in 2023 raised additional concerns for potential transmission to humans. The continued introduction and circulation of these viruses in mammals provides opportunities for stepwise adaptation to mammals through mutations and selection, and potential reassortment of gene segments, which could increase their pandemic potential for humans.

Epidemiological changes in poultry and other domestic birds

Originally, classical HPAI developed from H5 or H7 LPAI virus after direct or indirect exposure of poultry to infected wild birds followed by mutation in galliform poultry to a HPAI virus and circulation in poultry with premises-to-premises spread of the virus on fomites through human activity and possibly some contribution by aerosols [28,29]. Typically, the farm gate has been the point of control and the process uniformly used was stamping-out through a combination of diagnostics and surveillance to locate the virus, quarantine affected premises, movement controls on poultry within the infected zone, culling of poultry on affected premises, and cleaning and disinfection to destroy the virus in the affected barns. Historically, migratory aquatic birds have not been involved in the epidemiology of HPAI epizootics. Of the 45 unique HPAI events since 1959, 41 were eliminated, usually within a few weeks to several years using a stamping-out programme. As an example, during 2015, an H7N7 LPAI virus mutated to HPAI, affecting chicken layers on two farms in Germany with elimination in a few weeks by stamping-out [30].

The change in the epidemiology of HPAI in poultry occurred with the H5Nx Gs/GD Eurasian lineage as a result of the continued exposure to, infection of and transmission to domestic waterfowl, many of which were asymptomatically infected, as well as the
expansion with infection and spread by migratory waterfowl species beginning in 2002 [10]. In 2014, the 2.3.4.4c clade was introduced into North America by migrating waterfowl crossing the Bering Strait from Asia [31]. The first cases were due to transmission from wild birds to captive hunting raptors, and backyard galliform and anseriform domestic birds [31,32]. Initially, this virus was highly adapted and transmissible to mallard and domestic ducks, but poorly adapted to chickens and turkeys, requiring high infectious doses and was poorly transmissible [33-35]. The initial commercial poultry cases were in California, Arkansas, Missouri, and Minnesota during winter 2015 and were point-source introductions by indirect contact with wild waterfowl [31,32]. However, from late spring until June, most of the poultry cases resulted from farm-to-farm spread without wild bird involvement [32].

In 2014–2015, the 2.3.4.4c virus infection pressure and environmental contamination by wild aquatic birds was low with only 98 confirmed wild bird cases across 20 species in 15 US States, and 211 affected commercial and 21 backyard poultry premises in 21 States [36,37]. Afterwards, wild bird detections declined in the US, with two detections in the 2015–2016 season, one in the 2016–2017 season and none in subsequent surveillance seasons up to 2020–2021, and no Gs/GD Eurasian lineage cases on commercial or backyard premises [38]. However, in 2021, the 2.3.4.4b clade entered North America via the North Atlantic from Europe resulting in over 7,355 virus detections in over 155 wild bird species in 49 US States and more than 206 cases in wild mammals in 18 species in 26 US States (31 December 2021 to 6 November 2023) [39]. This higher wild bird infection rate than during the 2014–2015 outbreak and broader geographic footprint was associated with a higher infection rate in backyard birds (515 cases) and lower rate in commercial poultry (325 cases) [39]. Genomic analysis supported 85% of backyard and commercial farm cases resulted from point source introductions and only 15% as potential onward spread from farm-to-farm [40]. Similarly, Europe had a large proportion of cases in domestic poultry through point source introductions. In some sectors, particularly domestic ducks, farm-to-farm spread has occurred.

Because of the spread of the Gs/GD lineage of viruses by migratory birds, the biosecurity barrier has now moved from the farm gate to the barn door as the ‘line of separation’ from the contaminated environment around the barn (curtilage) and the poultry inside. Stamping-out has been effective in eliminating the virus from affected farms and thus reducing-to-eliminating farm-to-farm transmission, but introductions from wild birds create an ongoing threat. This challenges the socioeconomics of stamping-out programmes as the principal outbreak management tool. Consumer concerns and
political resistance to a blank check for stamping-out increase, while compensation and indemnification costs are deemed non-sustainable. The ongoing outbreaks have a negative impact on commercial production as well as rural livelihoods and mental health of farmers. In addition, the consumer has seen the cost of goods increase; for example, in the US and the European Union egg prices increased by 155% and 62% in the first quarter of 2022, respectively [41]. The welfare of birds is a concern not only in terms of death and suffering, but also by the depopulation of large numbers of seemingly healthy poultry (over 58 million in the US alone), loss of high-quality protein from this food supply and lack of free-range outdoor production.

Zoonotic features

Before 1996, human cases of AI viruses were exceedingly rare, but with the appearance of H5Nx Gs/GD Eurasian lineage, human infections have increased, raising the potential for emergence of the next human pandemic viruses from an AI virus. Sporadic human infections have been caused by the H5Nx Gs/GD lineage HPAI (H5N1 since 2003: 878 cases, 458 fatalities; H5N6 since 2014: 87 cases, 33 fatalities) and since 2013, the H7N9 Eurasian lineage LPAI and HPAI viruses (1,568 cases, 616 fatalities) [25]. Some molecular markers, indicative of adaptation to mammals, including humans, have been reported for H5Nx Gs/GD viruses, but neither H5 nor H7 HPAI virus lineage has exhibited sustained human-to-human transmission. A human infection with AI is reportable to the World Health Organization under the International Health Regulations (2005) [42].

Global control strategies

Country-based HPAI eradication programmes

The WOAH General Session (May 1964) included HPAI (i.e. fowl plague) for compulsory notification on a monthly or every two weeks basis to facilitate Members’ efforts to prevent the introduction of the disease via international trade in birds and their products. Since 1959, scientific and technological advances have improved the speed of the stamping-out process in well-resourced countries, thus shortening the time between suspicion, confirmation, and elimination of HPAI. These advances include development and implementation of:

- a single incident command system with real-time electronic communication to facilitate unified and coordinated response on national and state/provincial levels with all involved entities;
data collection and analysis capability processes that support HPAI management and response decisions;
- strong public-private partnerships between national and state governments and private sector companies to develop trust, cooperation and coordinated response activities;
- compensation and indemnification mechanisms to maintain livelihoods of farmers which encourages early reporting of suspicious HPAI cases;
- rapid molecular diagnostics and surveillance assays, coupled with commercial couriers to rapidly move samples from field to diagnostic laboratories, has shortened the time between suspicion to confirmation of HPAI;
- novel methods to facilitate mass depopulation with a 24-hour goal for completion on a single farm [43];
- environmentally sound methods for disposal of carcasses such as composting and rendering; and
- new methods for wet and dry virus elimination within barns and environments and on equipment.

These advancements have been incorporated into the stamping-out programmes of many countries improving the success of elimination. However, the H5Nx Gs/GD lineage has shown that elimination by stamping-out programmes alone is costly and not sustainable because of continual pressure of reintroduction from wild birds. In most low-middle income countries, the nature of the poultry production and selling systems, capacity issues with Veterinary Services, weak signals of infection in domestic ducks, and limited incentives to report disease including the lack of compensation, means that stamping-out is not sufficient to eliminate the virus. Most low-middle income countries in Asia and Africa have not been able to eliminate the virus once it became entrenched in poultry. Zoning (regionalisation) and compartmentalisation have eased country-wide geographic restrictions to smaller risk areas or low risk premises in some countries, allowing continued safe supply and even export of poultry and poultry products.

Country-based HPAI vaccination programmes reported through World Animal Health Information System

Vaccination has been used in a limited number of countries as an emergency or systematic measure to protect poultry or other captive bird populations from H5 and H7 HPAI, especially when the disease cannot be rapidly contained by methods based on stamping-out, or when existing biosecurity measures along the value chain are insufficient alone to prevent HPAI [4]. In 1995, both Mexico and Pakistan faced
entrenched HPAI viruses and implemented vaccination as a complementary tool alongside enhanced biosecurity and stamping-out programmes with Mexico achieving elimination by the end of 1995, and Pakistan reporting its last H7N3 HPAI case in 2004 [44]. Beginning in 1996, the Gs/GD viruses emerged in the People’s Republic of China (PR China) and over the next five years became entrenched and evolved into multiple clades and genotypes. From 2003, Gs/GD viruses extended to other east and southeast Asian countries [45]. Hong Kong, Special Administrative Region of PR China, implemented emergency and then systemic vaccination from 2002 because existing biosecurity measures in farms and markets were insufficient. Once Gs/GD virus was entrenched in poultry populations, vaccination was implemented to assist in disease prevention to maintain food security and rural livelihoods in PR China, Indonesia, Egypt, Vietnam and Bangladesh [44,46]. In Vietnam, vaccination was introduced in 2005 after some 30 million poultry had been destroyed but the virus was not eliminated, and human cases were still occurring [10]. Vaccination likely reduced zoonotic spillover.

In the mid-2000s, a few countries used emergency vaccination (Côte d’Ivoire, Sudan, Democratic People’s Republic of Korea, Israel, Russia and Pakistan) and were able, in combination with stamping-out in poultry, to eradicate the virus from their country. In addition, preventive systematic to targeted vaccination was used in a few (Mongolia, France and the Netherlands) to many commercial flocks (Kazakhstan) to protect poultry at high risk to HPAI [44,47]. Systematic vaccination of poultry has also been used successfully in PR China since 2017 to reduce the zoonotic threat posed by H7N9 HPAI viruses. In addition, successful HPAI vaccination programmes were undertaken in 13 European Union countries in zoo birds (non-poultry) in the mid-2000s [48]. Official and unofficial vaccination of poultry occurs in additional countries in Asia and Africa. Since the incursion of Gs/GD HPAI viruses into the Americas, emergency vaccination has been implemented in Mexico, Guatemala, El Salvador, Ecuador, Peru, Bolivia and Uruguay. Other countries are considering vaccination and trials have been conducted in France, Italy and the Netherlands as an initial step towards introduction of preventive vaccination. France commenced vaccination of ducks in October 2023.

Emerging strategic national challenges in the global control of HPAI

WOAH provides science-based guidelines for the prevention, control and elimination of HPAI through the *Terrestrial Animal Health Code* and the *Manual of Diagnostic Tests and Vaccines for Terrestrial Animals*, as well as other WOAH publications and conferences based on the collective inputs of WOAH AI Reference Laboratories, several
WOAH Collaborating Centres and AI experts in WOAH/Food and Agriculture Organization of the United Nations Network of Expertise on Animal Influenza (OFFLU; https://www.offlu.org). These helped to develop national control and eradication strategies. However, the changing ecology and epidemiology of HPAI, especially the 2.3.4.4b but also other clades, and its socioeconomic impact have challenged the old paradigm of eradication through national-driven, stamping-out strategies alone.

AI intelligence: surveillance and monitoring for early detection and prevention

Detection of HPAI virus (mostly 2.3.4.4b) in a wide range of migratory, scavenging, predatory and resident birds across six continents from October 2020 through August 2023, highlights a continuing threat. Infection persists in wild bird populations, creating a highly mobile reservoir spreading virus over vast distances and contaminating the environment. This has led to significant infection and mortality and the decline of breeding colonies of various endangered or threatened bird species, particularly seabirds. This, in turn, has led to multiple HPAI virus incursions to animal agriculture and some spill-back from infected poultry into wild birds. This changing ecological and epidemiological situation has led to infections and deaths in terrestrial and sea mammals, and sporadic human infections. To better comprehend and mitigate the changing ecology of 2.3.4.4b HPAI and its effects on domestic birds and wildlife, nations must strengthen their monitoring and surveillance of wild bird populations, to close crucial knowledge gaps concerning affected species, and combine this knowledge with domestic bird surveillance to create an effective HPAI early warning system. Cooperative regional programmes should be developed to share sequences, viruses and knowledge, especially along wild aquatic bird migratory flyways. Investment in genotype-phenotype understanding of virus biology in poultry and wild birds will further assist in understanding risks and their mitigations. Poultry production processes should be assessed to improve farm biosecurity and reduce risks of introduction and spill-back.

Vaccination as a supplemental disease control strategy for business continuity

Poultry vaccination can be used to prevent AI infections in at-risk regions, assist stamping-out programmes to maintain poultry production and livelihoods in entrenched areas when eradication is not immediately feasible. Use of high potency vaccines with appropriate antigenic match to the field viruses, can provide protection from illness and death, increase resistance to HPAI such that a 3-4log10 increase in virus exposure is required to produce infection, and if infections occur, the birds excrete 2-5log10 less virus, thus greatly reducing poultry infections and subsequent environmental
contamination. This translates into reduced transmission as quantified by a reproduction ratio (R) below 1 [49,50]. As a result, onward transmission is prevented, and environmental contamination by HPAI virus and exposure of humans and other mammals is minimised and even prevented. If R is reduced, although not to R<1, vaccination still may have benefits in reducing clinical disease and production losses, and if R is near to 1, outbreaks will be reduced in numbers and size, environmental contamination will decrease and the probability of onward spread to other farms is lower if adequate biosecurity and surveillance are in place. A further benefit will occur by reducing additional virus evolution and potential consequential changes in risk profile [51]. Technically, appropriate surveillance systems can be designed and implemented for vaccinated poultry to demonstrate freedom from infection, and if infection should be detected in vaccinated flocks, they would still be subject to a stamping-out strategy. However, despite the global threat and scientific support for vaccine usage, vaccination is not extensively used as a disease control measure by countries exporting poultry and poultry products, mostly due to the potential negative impact on international trade.

Vaccination can be effective, as a complementary tool, for the prevention, management, or elimination of HPAI depending on the individual countries HPAI status and available resources. Effective strategies should contain:

- a risk-based, logistically feasible, cost-effective, targeted vaccination programme designed for specific poultry populations and geographic areas within individual countries;
- co-development of vaccination programmes through public-private partnerships;
- availability of registered vaccines and understanding of how they would fit into a vaccination programme;
- modification of the regulatory process to accelerate antigenic updating of seed strains or hemagglutinin gene inserts; and
- science-based programmes to monitor vaccinated populations for protective immune response and detect any potential HPAI virus circulation.

Vaccination will not affect the HPAI status of a free country or zone if surveillance supports the absence of infection [4]. OFFLU has developed an Avian Influenza Matching (AIM) report (https://www.offlu.org/wp-content/uploads/2023/11/OFFLU-AIM-REPORT-2023.pdf) to scientifically assess the genetic and antigenic relatedness of HPAI viruses. This programme can assist countries in matching the hemagglutinin of inactivated vaccines to field viruses to provide and maintain optimal protection.
International standards to facilitate safe trade, including in the presence of vaccination

The *Terrestrial Code* provides outcome- and risk-based provisions to protect animal health and welfare during production and allow safe trade in animals and animal products while avoiding unjustified sanitary barriers to trade [4]. The *Terrestrial Code* contains specific considerations for HPAI by:

- defining a country, zone or compartment free from HPAI;
- considering the possible use of vaccination;
- establishment of a containment zone within a country or zone free from HPAI;
- specific recommendations for the recovery of the free status of a country or zone after an incursion;
- provisions for the safe importation of various poultry commodities, with science-based recommendations according to the animal health status of the population; and
- a list of commodities considered safe irrespective of HPAI status of the exporting country or zone.

National regulations should be harmonised with WOAH International Standards to allow trade when appropriate vaccination, zoning and compartmentalisation are utilised in HPAI control programmes. This can be facilitated by development of surveillance programmes to demonstrate the safety of poultry and poultry products from vaccinated flocks and HPAI-free zones and compartments. Guidelines for diagnostic techniques and vaccines for HPAI are covered in the WOAH *Terrestrial Manual* [1]. Unfortunately, not all countries are prepared to accept poultry from countries where vaccination is used, and this inhibits vaccination in places where it would likely be of benefit.

Global coordinated strategy for the progressive control of AI

The response to the global AI threat must involve coordinated actions by international organisations, governmental agencies, poultry producers, scientific institutions, development partners and other stakeholders to prevent further spread of this virus. The response must aim to ensure the well-being of farmers, protect animal welfare and biodiversity, prevent economic losses, reduce poverty, ensure consumer confidence, and allow further contribution of the poultry sector to global health, wealth, equity and sustainability. Regional and national AI control strategies should be based on best practices, appropriate enforcement of the legislation and close coordination with
stakeholders from public and private sectors. Members should increase their technical capacities and expertise, identify, and use the relevant scientific knowledge, and engage in risk communication with relevant stakeholders.

Conclusions

The ecological and epidemiological changes resulting from the H5Nx 2.3.4.4b HPAI over the past three years have challenged the exclusivity of stamping-out programmes and are requiring that national veterinary services work closely with wildlife and public health officials and other stakeholders to address this global One Health crisis. Critical strategic challenges to be addressed include surveillance and monitoring for early detection, prevention and establishing freedom from infection; improved disease control strategies including increasing use of vaccination and specialised surveillance systems to demonstrate HPAI freedom in vaccinated flocks; implementation of international standards; and global coordination for the global control of HPAI.

Acknowledgements

This paper is based on work presented at the WOAH 90th General Session held in Paris, France, on 22 May 2023, to set the stage for the Animal Health Forum, dedicated to solving the HPAI global crisis. The authors wish to thank Montserrat Arroyo, Paolo Tizzani, Francisco D’Alessio, Alexandre Fediaevsky, Keith Hamilton, Aedín Mac Devitt and Andrea Ellis for their technical and editorial support.

References

WOAH: World Organisation for Animal Health

Figure 1

Cumulative reported presence of H5 and H7 high pathogenicity avian influenza from 2005–2023 (as of 30 August 2023)
Figure 2

Number of H5 and H7 high pathogenicity avian influenza outbreaks reported by animal category (as of 30 August 2023)
Figure 3

Number of deaths and culling of domestic birds affected by H5 and H7 high pathogenicity avian influenza from 2005–2023 (as of 30 August 2023)
Figure 4

Geographic spread of the 2.3.4.4b goose/Guangdong high pathogenicity avian influenza virus predominantly from October 2020 through August 2023
WOAH: World Organisation for Animal Health

Figure 5

Reported outbreaks of high pathogenicity avian influenza in wild birds between October 2020 and August 2023