Report of the WOAH *ad hoc* Group on susceptibility of crustacean species to infection with WOAH listed diseases

Original: English (EN) November 2023

Table of Contents

1.	Introduction	2
2.	Methodology	2
3.	Scoring and assessments	5
4.	Results	21
5.	Naming convention for susceptible species	24
6.	Comments on the ad hoc Group's rationale and decision-making	25
7.	Article 1.5.9 Listing of Susceptible species at a taxonomic ranking of Genus or higher	25
8.	References	25

List of Annexes

Annex 1. List of Participants from 2023 assessment	35
Annex 2. Terms of Reference from 2023 assessment	36
Annex 3. List of Participants from 2016 assessment	37

World Organisation for Animal Health Founded as OIE

Standards Department [ACC.Secretariat@woah.org] 12, rue de Prony 75017 Paris, France T. +33 (0)1 44 15 18 88 F. +33 (0)1 42 67 09 87 woah@woah.org www.woah.org

1. Introduction

This report covers the work of the WOAH *ad hoc* Group on Susceptibility of crustacean species to infection with WOAH listed diseases (the *ad hoc* Group) who met virtually on 7 to 9 November 2023.

An *ad hoc* Group on Susceptibility of crustacean species to infection with WOAH listed diseases previously completed assessments for infection with white spot syndrome virus (WSSV) in June 2016. The group completed another assessment at this time as there is new scientific evidence on the susceptibility of crustaceans to infection with WSSV to be reviewed. Findings from the assessments completed in both 2016 and 2023 are included in this report.

The list of participants and the Terms of Reference from the 2023 assessment are presented in Annex 1 and Annex 2, respectively. The list of participants from the 2016 assessment is presented in Annex 3.

2. Methodology

The *ad hoc* Group applied criteria, as outlined in Chapter 1.5. Criteria for listing species as susceptible to infection with a specific pathogen, of the WOAH *Aquatic Animal Health Code* (the *Aquatic Code*), to potential host species in order to determine susceptibility to infection with WSSV.

A three-stage approach, as described in Article 1.5.3, was used to assess the susceptibility of a species to infection with WSSV and was based on:

Stage 1. criteria to determine whether the route of transmission is consistent with natural pathways for the infection (as described in Article 1.5.4.);

Stage 2. criteria to determine whether the pathogenic agent has been adequately identified (as described in Article 1.5.5.);

Stage 3. criteria to determine whether the evidence indicates that presence of the pathogenic agent constitutes an infection (as described in Article 1.5.6.):

- A. The pathogenic agent is multiplying in the host, or developing stages of the pathogenic agent are present in or on the host;
- B. Viable pathogenic agent is isolated from the proposed susceptible species, or infectivity is demonstrated by way of transmission to naïve individuals;
- C. Clinical or pathological changes are associated with the infection;
- D. The specific location of the pathogen corresponds with the expected target tissues.

Details of the three-stage approach applied by the *ad hoc* Group for infection with WSSV, including any additional considerations are described below:

2.1. Stage 1: Criteria to determine whether the route of transmission is consistent with natural pathways for the infection:

Table 1 describes the route of transmission for infection with WSSV used by the *ad hoc* Group when applying Stage 1 to assess susceptibility to infection with WSSV, as well as some considerations.

Table 1: Route of transmission for infection with WSSV

Route of transmission	Considerations
Natural exposure included situations where infection had occurred without experimental intervention (e.g. infection in wild or farmed populations) OR	Experimental infection via invasive routes (i.e. injection) was not considered a natural route of transmission and therefore such studies were not evaluated.
Non-invasive experimental procedures such as cohabitation with infected hosts or infection by immersion or <i>per os.</i>	

2.2. Stage 2: Criteria to determine whether the pathogenic agent has been adequately identified:

Table 2 describes the pathogen identification methods for infection with WSSV used by the *ad hoc* Group when applying Stage 2 to assess susceptibility to infection with WSSV, as well as some considerations.

Table 2: Pathogen identification for infection with WSSV

Pathogen Identification (WSSV)	Considerations
Specific TaqMan real-time PCR (e.g. Moody <i>et al</i> ., 2022)	Because of the specificity of the TaqMan real-time PCR, sequence analysis was not considered
OR	necessary for pathogen confirmation.
PCR or nested PCR followed by sequence analysis (e.g. Lo <i>et al.</i> , 1996) ¹	If a WOAH approved commercial kit was used to identify the pathogen which uses PCR, sequencing was not required.
OR	
<i>In-situ</i> hybridisation using a WSSV-specific probe (e.g. Nunan & Lightner, 1997)	
OR	
LAMP method using WSSV-specific primers (e.g. Kono <i>et al</i> ., 2004)	

PCR using two or more sets of primers were considered sufficient for pathogen identification in lieu of sequence analysis.

2.3. Stage 3: Criteria to determine whether the evidence indicates that presence of the pathogenic agent constitutes an infection:

Table 3 describes the evidence of infection used by the *ad hoc* Group when applying Stage 3 to assess susceptibility to infection with WSSV.

Table 3: Evidence of infection with WSSV

	Evidence of	of infection	
A: Replication	B: Viability / Infectivity	C: Pathology / Clinical signs ²	D: Location
Presence of characteristic inclusion bodies and positive labelling of inclusion bodies by ISH or IFAT OR Presence of virions in inclusion bodies by TEM OR Demonstration of high copy number by a specific TaqMan PCR (e.g. Moody <i>et al.</i> , 2022) OR Demonstration of increasing copy number over time with qPCR with confirmatory PCR/sequencing specific for infectious virus OR Serial passage from individual to SPF individual of the same species.	Single passage bioassay to a SPF (target pathogen) of any susceptible host species and confirmation of pathogen identification.	Inclusions (eosinophilic to basophilic) within nuclei of cells in target organs and tissues. Host nuclei hypertrophic with marginated chromatin with/without the presence of clinical signs (e.g. white spots on cuticle, moribund, lethargic).	Cells of tissues and organs of ectodermal and mesodermal origin. Target tissues and organs include cuticular epithelium (gills, pleopods, appendages), connective tissues, haematopoietic tissue, haemocytes, antennal gland and lymphoid organ ³ .

4

² Pathology/Clinical signs may be non-specific, variable and include some or all of the characteristics listed.

³ Lymphoid organ is not present in most non-penaeid host taxa. For non-crustacean host taxa, other organs and tissues may show evidence of infection with WSSV.

3. Scoring and assessments

Table 4 describes the different scores and outcomes of the assessments undertaken by the ad hoc Group.

Table 4: Scores

Score	Outcome
1	Species assessed as susceptible (as described in Article 1.5.7.). These species were proposed for inclusion in Article 9.9.2. of Chapter 9.9., Infection with WSSV, of the <i>Aquatic Code</i> and Section 2.2.1. of Chapter 2.2.8., Infection with WSSV, of the <i>Aquatic Manual</i> .
2	Species assessed as having incomplete evidence for susceptibility (as described in Article 1.5.8.) were proposed for inclusion in Section 2.2.2., Species with incomplete evidence for susceptibility of Chapter 2.2.8., Infection with WSSV, of the <i>Aquatic Manual</i> .
3	Species assessed as not meeting the criteria or for which there was unresolved or conflicting information. These species were not proposed for inclusion in either the Aquatic Code or the Aquatic Manual.
	The exceptions were species where pathogen-specific positive PCR results have been reported but an active infection has not been demonstrated. These species were proposed for inclusion in the second paragraph in Section 2.2.2. Species with incomplete evidence for susceptibility of Chapter 2.2.8. Infection with WSSV, of the Aquatic Manual.
4	Species assessed as non-susceptible.
NS	Species not scored due to insufficient or irrelevant information.

Table 5 summarises all of the assessments for host susceptibility to infection with WSSV undertaken by the *ad hoc* Group together with the outcomes and relevant references. For Stage 3, as described in Chapter 1.5. of the *Aquatic Code*, evidence to support criterion A alone was sufficient to determine infection. In the absence of evidence to meet criterion A, satisfying at least two of criteria B, C or D were required to determine evidence of infection.

Assessment Table Key:

- N: Natural infection
- E: Experimental (non-invasive)
- EI: Experimental invasive

- YES: Demonstrates criterion is met
- NO: Criterion is not met
 - I: Inconclusive

ND: Not determined

NS: Not scored

N/A: Not applicable

Table 5: Assessments for infection with WSSV

Family	Scientific name	Common		Stage 2: Pathogen					Outcome	Year	References
		name	of infection	Identification	А	В	С	D		Assessed	
Score 1											
Astacidae	Austropotamobius pallipes	white-clawed crayfish	E and El	PCR and sequencing	YES	YES	YES	YES	1	2016	Bateman <i>et al</i> ., 2012b

Family	Scientific name	Common name	Stage 1: Route of infection	Stage 2: Pathogen Identification	Stage 3: E	vidence of I	nfection		Outcome	Year	References
					А	В	С	D		Assessed	
	Pacifastacus Ieniusculus	signal crayfish	E	PCR and sequencing	YES	YES	YES	YES	1	2016	Bateman <i>et al.</i> , 2012b
	Pontastacus Ieptodactylus	Danube crayfish	E	ISH, TEM, and dot blot	YES	NO	YES	YES	1	2016	Corbel <i>et al.,</i> 2001
Calanidae	Calanus pacificus californicus	no common name	E	qPCR of VP28 transcripts	YES	NO	NO	NO	1	2016	Mendoza-Cano <i>et</i> <i>al</i> ., 2014
	Faxonius limosus	spinycheek crayfish	E and El	TEM, dot blot	YES	NO	YES	YES	1	2016	Corbel <i>et al.</i> , 2001
Cambaridae	Procambarus clarkii	red swamp crawfish	N and E and El	PCR, ISH, dot blot	YES	NO/ YES	YES	YES	1	2016	Baumgartner <i>et al.</i> , 2009; Chang <i>et al.</i> , 1998a; Du <i>et al.</i> , 2008; Huang <i>et al.</i> , 2001; Wang <i>et al.</i> , 1998a; Xue <i>et al.</i> , 2012; Xu <i>et al.</i> , 2007
	Procambarus zonangulus	no common name	N	PCR and sequencing	YES	NO	YES	YES	1	2016	Baumgartner <i>et al</i> ., 2009
Cancridae	Cancer pagurus	edible crab	E and El	ISH, TEM, dot blot	YES	YES	YES	YES	1	2016	Bateman <i>et al.,</i> 2012b; Corbel <i>et al.,</i> 2001
Nephropidae	Homarus gammarus	European lobster	E and El	PCR and sequencing	YES	YES	YES	YES	1	2016	Bateman <i>et al.,</i> 2012a; Bateman <i>et</i> <i>al.,</i> 2012b
	Nephrops norvegicus	Norway lobster	E and El	PCR and sequencing	YES	YES	YES	YES	1	2016	Bateman <i>et al</i> ., 2012b
Paguridae	Pagurus benedicti	no common name	N and El	PCR, TEM	YES	NO	NO	NO	1	2016	Chang <i>et al.</i> , 2012
	Palaemon carinicauda	ridgetail prawn	N and E	qPCR, dot blot, ISH	YES	YES	NO/YES	YES	1	2016	Dun <i>et al.,</i> 2015; Xu <i>et al.,</i> 2007
Palaemonidae	Palaemon orientis	no common name	E	PCR, ISH	YES	NO	YES	YES	1	2016	Chang <i>et al</i> ., 1998b; Wang <i>et al.</i> , 1998a
	Palaemon ritteri	barred grass shrimp	E	PCR and sequencing	YES	NO	YES	NO	1	2016	Sánchez-Paz <i>et al</i> ., 2015

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen Identification	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection		А	В	С	D		Assessed	
Palinuridae	Panulirus penicillatus	pronghorn spiny lobster	E	PCR, ISH	YES	NO	YES	YES	1	2016	Chang <i>et al.,</i> 1998a; Chang <i>et al.,</i> 1998b; Wang <i>et al.,</i> 1998a
	Panulirus versicolor	painted spiny lobster	E	PCR, ISH	YES	NO	YES	YES	1	2016	Chang <i>et al.,</i> 1998a; Chang <i>et al.,</i> 1998b
Parastacidae	Cherax quadricarinatus	red claw crayfish	E and El	PCR, qPCR, IHC	YES	YES	YES	YES	1	2016	Gao <i>et al</i> ., 2014; Soowannayan <i>et al</i> ., 2011
	Metapenaeus ensis	greasyback shrimp	N and E	PCR, ISH, dot blot	YES	NO	YES	YES	1	2016	Chang <i>et al.</i> , 1998a; Chang <i>et al.</i> , 1998b; Wang <i>et al.</i> , 1998a; Wang <i>et al.</i> , 1998b; Xu <i>et al.</i> , 2007
	Penaeus chinensis	fleshy prawn	N and El	qPCR, TEM, dot blot, ISH	YES	YES	YES	YES	1	2016	Gao <i>et al.</i> , 2011; Huang <i>et al.</i> , 2001; Jang <i>et al.</i> , 2009; Zhan <i>et al.</i> , 1998; Xu <i>et al.</i> , 2007
Penaeidae	Penaeus indicus	Indian white prawn	Ν	PCR and sequencing	YES	NO	YES	YES	1	2016	Toms <i>et al.</i> , 2015; Rajan <i>et al.</i> , 2000; Rajendran <i>et al.</i> , 1999; Hameed <i>et al.</i> , 2000; Tang <i>et al.</i> , 2012
	Penaeus japonicus	Kuruma prawn	N and E	PCR	YES	YES	YES	YES	1	2016	Chou <i>et al.</i> , 1998; Feng <i>et al.</i> , 2014; Lo <i>et al.</i> , 1996b; Wang <i>et al.</i> , 1998b; You <i>et al.</i> , 2010; Zhan <i>et al.</i> , 1998; Zhang <i>et al.</i> , 2008

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection	Identification	А	В	С	D		Assessed	
	Penaeus monodon	giant tiger prawn	N	PCR, ISH, TEM, dot blot	YES	YES	YES	YES	1	2016	Toms <i>et al.</i> , 2015; Lo <i>et al.</i> , 1996b; Rajendran <i>et al.</i> , 1999; Hameed <i>et al.</i> , 2000; Wang <i>et al.</i> , 1998a; Wang <i>et al.</i> , 1998b; Zhan <i>et al.</i> , 1998; Xu <i>et al.</i> , 2007
	Penaeus paulensis	Sao Paulo shrimp	N	PCR and sequencing	YES	NO	YES	YES	1	2016	Souto Cavalli <i>et al</i> ., 2011
			N	PCR (5 sets of primers)	YES	ND	ND	YES	1	2023	Galaviz-Silva <i>et al</i> ., 2004
	Penaeus stylirostris	blue shrimp	E	Inoculum not characterised - typical histopathology only	YES	YES	YES	YES	2	2016	Lightner <i>et al</i> ., 1998
	Penaeus vannamei	whiteleg shrimp	N and E	PCR, ISH, histology, dot blot	YES	YES	YES	YES	1	2016	Cuéllar-Anjel <i>et al.</i> , 2012; Lightner <i>et al.</i> , 1998; Lo <i>et al.</i> , 1999; Wang <i>et al.</i> , 1998b; Xu <i>et al.</i> , 2007
	Trachysalambria curvirostris	southern rough shrimp	E	PCR, ISH	YES	NO	YES	YES	1	2016	Chang <i>et al</i> ., 1998b; Wang <i>et al</i> ., 1998a
Polybiidae	Liocarcinus depurator	blue-leg swimcrab	E	TEM, ISH, dot blot	YES	NO	YES	YES	1	2016	Corbel <i>et al</i> ., 2001
	Necora puber	velvet swimcrab	E	PCR, TEM, ISH, dot blot	YES	NO	YES	YES	1	2016	Corbel <i>et al</i> ., 2001
Portunidae	Charybdis (Charybdis) granulata	no common name	E	PCR, ISH	YES	NO	YES	YES	1	2016	Chang <i>et al</i> ., 1998b; Wang <i>et al</i> ., 1998a

Family	Scientific name	Common name	Stage 1: Route of infection	Stage 2: Pathogen Identification	Stage 3: E	vidence of I	nfection		Outcome	Year	References
					А	В	С	D		Assessed	
	Portunus sanguinolentus	threespot swimming crab	N and E and El	PCR, ISH	YES	NO	YES	YES	1	2016	Chang <i>et al.</i> , 1998a; Chang <i>et al.</i> , 1998b; Kou <i>et al.</i> , 1998; Lo <i>et al.</i> , 1996a; Lo <i>et al.</i> , 1996b; Hameed <i>et al.</i> , 2003; Wang <i>et al.</i> , 1998b
	Scylla serrata	Indo-Pacific swamp crab	N and E	PCR, ISH	YES	YES	YES	YES	1	2016	Chen <i>et al.</i> , 2000; Toms <i>et al.</i> , 2015; Kanchanaphum <i>et al.</i> , 2011; Liu <i>et al.</i> , 2011a; Liu <i>et al.</i> , 2011b; Lo <i>et al.</i> , 2011b; Lo <i>et al.</i> , 1996a; Lo <i>et al.</i> , 1996b; Rajendran <i>et al.</i> , 1996b; Rajendran <i>et al.</i> , 1999; Overstreet <i>et al.</i> , 2009; Supamattaya <i>et al.</i> , 1998
Varunidae	Eriocheir sinensis	Chinese mitten crab	N and E and El	PCR and sequencing	YES	YES	YES	YES	1	2016	Bateman <i>et al</i> ., 2012b; Ding <i>et al</i> ., 2015
				Scor	re 2						
Carcinidae	Carcinus maenas	green crab	E and El	PCR	YES	YES	YES	YES	2	2016	Bateman <i>et al.</i> , 2012b; Corbel <i>et al.</i> , 2001
Ergasilidae	Ergasilus manicatus	no common name	E	qPCR	YES	NO	NO	NO	2	2016	Overstreet <i>et al.</i> , 2009
Gecarcinucidae	Spiralothelphusa hydrodroma	no common name	E and El	PCR	YES	YES	YES	YES	2	2016	Sundar Raj <i>et al</i> ., 2012; Sahul Hameed <i>et al.</i> , 2001
	Vela pulvinata	no common name	E and El	PCR	YES	NO	YES	YES	2	2016	Sahul Hameed <i>et</i> <i>al</i> ., 2001
Grapsidae	Metopograpsus sp.	N/A	E	EM in <i>P. vannamei</i> (no PCR)	YES	YES	YES	YES	2	2016	Rajendran <i>et al.</i> , 1999

Family	Scientific name	Common name	Stage 1: Route of infection	Stage 2: Pathogen Identification	Stage 3: E	vidence of I	nfection		Outcome		References
					A	В	С	D		Assessed	
Macrophthalmidae	Macrophthalmus (Mareotis) japonicus	no common name	N	Dot blot, ISH	YES	NO	YES	YES	2	2016	Xu <i>et al.</i> , 2007
Ocypodidae	Leptuca pugilator	Atlantic sand fiddler	E and El	PCR, ISH	YES	YES	YES	YES	2	2016	Kanchanaphum <i>et</i> <i>al.</i> , 1998
	Macrobrachium idella	slender river prawn	E	Histopathology and western blot	YES	YES	YES	YES	2	2016	Rajendran <i>et al.,</i> 1999; Sahul Hameed <i>et al.,</i> 2000
	Macrobrachium Iamarrei	Kuncho river prawn	E	Histopathology and western blot	YES	YES	YES	YES	2	2016	Sahul Hameed <i>et</i> <i>al.,</i> 2000
	Macrobrachium nipponense	Oriental river prawn	E	PCR	YES	NO	YES	YES	2	2016	Yun <i>et al.</i> , 2014
Palaemonidae	Macrobrachium rosenbergii	giant river prawn	E and I	Various methods used	YES	YES	YES	YES	2	2016	Corteel <i>et al.</i> , 2012; Gudkovs <i>et al.</i> , 2014; Shahadat Hossain <i>et al.</i> , 2001a; Lo <i>et al.</i> , 1996a; Rajendran <i>et al.</i> , 1999; Sahul Hameed <i>et al.</i> , 2000
	Palaemon adspersus	Baltic prawn	E and El	PCR, TEM, ISH, dot blot	YES	YES	YES	YES	2	2016	Corbel <i>et al</i> ., 2001
Delinuridae	Panulirus homarus	scalloped spiny lobster	EI	EM in <i>P. vannamei</i> – no PCR or sequencing	YES	YES	YES	YES	2	2016	Rajendran <i>et al.,</i> 1999
Palinuridae	Panulirus polyphagus	Mud spiny lobster	E	EM in <i>P. vannamei</i> – no PCR or sequencing	YES	YES	YES	YES	2	2016	Rajendran <i>et al.,</i> 1999
Penaeidae	Metapenaeus dobsoni	kadal shrimp	N and E	PCR	YES	YES	YES	YES	2	2016	Shahadat Hossain <i>et al.</i> , 2001a; Rajendran <i>et al.</i> , 1999
	Metapenaeus monoceros	speckled shrimp	N and E	PCR	YES	YES	YES	YES	2	2016	Joseph <i>et al</i> ., 2015; Rajendran <i>et al</i> ., 1999; Yan <i>et al</i> ., 2004

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection	Identification	A	В	С	D		Assessed	
	Penaeus aztecus	northern brown shrimp	E	Inoculum not characterised - typical histopathology only	YES	NO	YES	YES	2	2016	Lightner <i>et al.</i> , 1998
			N	PCR (3 sets of primers)	ND	YES	ND	ND	3	2023	Chapman <i>et al</i> ., 2004
	Penaeus	northern pink	E	Inoculum not characterised - typical histopathology only	YES	NO	YES	YES	2	2016	Lightner <i>et al</i> ., 1998
	duorarum	shrimp	Ν	Negative (PCR – 3 sets of primers) ⁴	ND	ND	ND	ND	NS	2023	Chapman <i>et al</i> ., 2004.
			E	NO - histology only	YES	YES	YES	YES	NS	2023	Qiong-Wang <i>et al</i> ., 1999
	Penaeus	banana prawn	N and E	PCR, TEM/IFA	YES	YES	YES	YES	2	2016	Flegel <i>et al</i> ., 2013; Wang <i>et al</i> ., 2002
	merguiensis		Ν	Nested PCR and sequencing	ND	ND	ND	YES	2	2023	Saravanan <i>et al</i> ., 2017
			N	PCR (3 sets of primers)	YES ⁵	YES	ND	ND	2	2023	Chapman <i>et al</i> ., 2004
	Penaeus setiferus	northern white shrimp	E	Inoculum not characterised - typical histopathology only	YES	YES	YES	YES	2	2016	Lightner <i>et al</i> ., 1998
			N	TaqMan RT-PCR	ND	ND	ND	YES	3	2023	Muhammad <i>et al</i> ., 2020
Portunidae	Callinectes	blue crab	E and El	TaqMan RT-PCR	YES	ND	ND	ND	1 ⁶	2023	Blaylock <i>et al</i> ., 2019
Foilunidae	sapidus		N	TaqMan RT-PCR	ND	YES	ND	ND	3	2023	Powell <i>et al</i> ., 2015

⁴ The number of animals screened in the study was low and were found to be negative through screening with 3 sets of primers.

⁵ Only one animal out of 586 animals tested showed evidence of WSSV replication (positive for stage 3A).

⁶ The *ad hoc* Group did not consider the single paper ranked with a score of '1' strong enough on its own for an overall score of '1' for this host species.

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection	Identification	А	В	С	D		Assessed	
	Charybdis (Charybdis) feriata	crucifix crab	N and E	PCR, ISH	YES	NO	YES	YES	2	2016	Shahadat Hossain <i>et al.</i> , 2001a; Kou <i>et al.</i> , 1998; Lo <i>et al.</i> , 1996a; Wang <i>et al.</i> , 1998a
	Portunus pelagicus	blue swimming crab	N and E and El	PCR	YES	NO	YES	YES	2	2016	Kou <i>et al</i> ., 1998; Supamattaya <i>et al</i> ., 1998
	Portunus trituberculatus	gazami crab	N	qPCR	NO	NO	NO	NO	2	2016	Meng <i>et al</i> ., 2009
	Scylla	purple mud	N and E	Nested PCR	YES	YES	YES	YES	2	2023	Gopalakrishnan <i>et</i> <i>al</i> ., 2011
	tranquebarica	crab	N and E and El	PCR (natural only)	YES	YES	YES	YES	2	2016	Joseph <i>et al</i> ., 2015; Rajendran <i>et al</i> ., 1999
Scyllaridae	Scyllarus arctus	lesser slipper lobster	E and El	TEM, dot blot	YES	NO	YES	NO	2	2016	Corbel <i>et al</i> ., 2001
Sergestidae	Acetes sp.	N/A	E and El	PCR	YES	NO	YES	YES	2	2016	Supamattaya <i>et al</i> ., 1998
Sesarmidae	Sesarma sp.	N/A	E and El	PCR	YES	YES	YES	YES	2	2016	Kanchanaphum <i>et</i> <i>al</i> ., 1998; Rajendran <i>et al</i> ., 1999
Varunidae	Helice tientsinensis	no common name	N	dot blot, ISH	YES	NO	YES	YES	2	2016	Xu <i>et al</i> ., 2007
				Scor	e 3						
	Alphous	teppo	ND	Nested PCR	NO	NO	NO	NO	3	2023	Takahashi <i>et al.,</i> 2003
Alpheidae	Alpheus brevicristatus	snapping shrimp	EI	Nested PCR, dot blot and ISH	YES	YES	YES	YES	NS	2023	Takahashi <i>et al.,</i> 2003; Xu <i>et al.</i> , 2007
	Alpheus digitalis	forceps snapping shrimp	N	LAMP, PCR and sequencing	ND	ND	ND	ND	3	2023	Xu <i>et al</i> ., 2021

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection	Identification	А	В	С	D		Assessed	
	Alpheus japonicus	Japanese snapping shrimp	N	LAMP, PCR and sequencing	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
	Alpheus lobidens	brownbar snapping shrimp	ND	Nested PCR	NO	NO	NO	NO	3	2016	Takahashi <i>et al.,</i> 2003
	Artemia salina	brine shrimp	ND	Nested PCR	NO	NO	NO	NO	3	2016	Otta <i>et al.</i> , 1999
Artomiidaa	Artomia an	N/A	N and E	Dot blot, ISH	NO	NO	NO	NO	3	2016	Xu <i>et al.</i> , 2007
Artemiidae	Artemia sp.	N/A	E	Nested PCR	ND	ND	ND	ND	3	2023	Zhang <i>et al.,</i> 2010
	Nikora sp.	N/A	E	PCR	NO	NO	NO	NO	3	2016	Zhang <i>et al.</i> , 2008
Astacidae	Astacus astacus	noble crayfish	E and El	Nested PCR	NO	NO	NO	NO	3	2016	Jiravanichpaisal e <i>al</i> ., 2004
Balanidae	Belanus sp.	N/A	N and E and El	PCR and sequencing; dot blot, ISH	NO/YES	NO/YES	NO/YES	NO/YES	3	2016	Ramirez-Douriet e <i>al.,</i> 2005; Xu <i>et al.</i> 2007
Calappidae	Calappa philargius	spectacled box crab	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al.,</i> 2003
Cambaridae	Faxonius punctimanus	spothand crayfish	N	PCR, probe	NO	NO	NO	NO	3	2016	Lo <i>et al.,</i> 1999
Propagnidas	Crangen offinia	Japanese sand	E	PCR, monoclonal antibody	NO	NO	YES	NO	3	2016	Gong <i>et al.,</i> 2010
Crangonidae	Crangon affinis	shrimp	N	LAMP, PCR and sequencing	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
Cyclopidae	Apocyclops royi	no common name	E	PCR and sequencing	YES	NO	NO	NO	3	2016	Chang <i>et al</i> ., 201 ⁻
Diogenidae	Diogenes nitidimanus	no common name	EI	PCR	NO	NO	NO	NO	3	2016	Chang <i>et al</i> ., 2012
Dorippidae	Paradorippe granulata	granulated mask crab	E and El	PCR	ND	ND	I ⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003

⁷ The results in this study referred to all challenged crabs and did not differentiate between E and EI animals.

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	Infection		Outcome	Year	References
		name	of infection	Identification	А	В	С	D		Assessed	
Epialtidae	Doclea muricata	no common name	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
Euphausiidae	Euphausia pacifica	lsada krill	N	LAMP, PCR and sequencing	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
Galenidae	Halimede ochtodes	no common name	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al.</i> , 2003
Cranaidaa	Grapsus albolineatus	mottled crab	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
Grapsidae	Metopograpsus messor	no common name	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain <i>et al.,</i> 2001a
	Latreutes anoplonyx	medusa shrimp	N	LAMP, PCR and sequencing	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
Hippolytidae	Latreutes planirostris	flatnose shrimp	N	LAMP, PCR and sequencing	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
Leucosiidae	Philyra syndactyla	no common name	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al.,</i> 2003
Lithodidae	Lithodes maja	stone king crab	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al.</i> , 2003
Macrophthalmide	Macrophthalmus (Macrophthalmus) sulcatus	no common name	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain <i>et al</i> ., 2001a
Matutidae	Ashtoret miersii	no common name	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
Matulidae	Matuta planipes	flower moon crab	N	PCR	NO	NO	NO	NO	3	2016	Otta <i>et al</i> ., 1999
Menippidae	Menippe rumphii	maroon stone crab	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> .,2003
	Gelasimus vocans	orange fiddler crab	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain <i>et al</i> ., 2001a
Ocypodidae	Leptuca panacea	gulf sand fiddler	N and El	TaqMan RT-PCR	ND	ND	ND	YES	3	2023	Muhammed <i>et al.,</i> 2020
	Leptuca spinicarpa	spined fiddler	N	TaqMan RT-PCR	ND	ND	ND	YES	3	2023	Muhammed <i>et al.,</i> 2020

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection	Identification	А	В	С	D		Assessed	
	Minuca Iongisignalis	gulf marsh fiddler	N	TaqMan RT-PCR	ND	ND	ND	YES	3	2023	Muhammed <i>et al.,</i> 2020
	Minuca minax	redjointed fiddler	N	TaqMan RT-PCR	ND	ND	ND	YES	3	2023	Muhammed <i>et al.,</i> 2020
	Minuca rapax	mudflat fiddler	N	TaqMan RT-PCR	ND	ND	ND	YES	3	2023	Muhammed <i>et al.,</i> 2020
Paguridae	Pagurus angustus	no common name	EI	PCR	NO	NO	NO	NO	3	2016	Chang <i>et al.</i> , 2012
	Palaemon gravieri	Chinese ditch prawn	N	LAMP, PCR and sequencing	ND	ND	ND	ND	3	2023	Xu <i>et al.</i> , 2021
	Palaemon macrodactylus	migrant prawn	N	PCR, qPCR	NO	NO	NO	NO	3	2016	Martorelli <i>et al.,</i> 2010
Palaemonidae	Palaemon pandaliformis	potitinga prawn	N	LAMP	ND	ND	ND	NO ⁸	3	2023	Bandeira <i>et al</i> ., 2018
	Palaemon pugio	daggerblade	N and El	qPCR	NO	NO	YES	NO	3	2016	Muhammed and Lotz, 2015
	Palaemon pugio	grass shrimp	N and El	TaqMan RT-PCR	ND	ND	ND	YES	3	2023	Muhammed <i>et al.,</i> 2020
	Palaemon sp.	N/A	N	PCR	NO	NO	NO	NO	3	2016	Lo <i>et al.</i> , 1996a
Parthenopidae	Parthenope prensor	no common name	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
Pasiphaeidae	Leptochela gracilis	lesser glass shrimp	N	LAMP, PCR and sequencing	ND	ND	ND	ND	3	2023	Xu <i>et al</i> ., 2021
	Artemesia Ionginaris	Argentine stiletto shrimp	N	PCR/qPCR	NO	NO	NO	NO	3	2016	Martorelli <i>et al</i> ., 2010
Penaeidae	Metapenaeus affinis	jinga shrimp	N	PCR	NO	NO	NO	NO	3	2016	Gholamhoseini <i>et</i> <i>al.</i> , 2013
	Metapenaeus brevicornis	yellow shrimp	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain <i>et al</i> ., 2001b

⁸ Gill tissue was used to for identify the pathogen which could be a detection on the surface of the animal rather than within the tissue.

Family	Scientific name		Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection	Identification	A	В	С	D		Assessed	
	Parapenaeopsis stylifera	kiddi shrimp	N	PCR, gene probes	NO	NO	NO	NO	3	2016	Gholamhoseini <i>et al.</i> , 2013; Shahadat Hossain <i>et al.</i> , 2001a
	Penaeus californiensis	yellowleg shrimp	N	PCR and sequencing	NO	NO	NO	NO	3	2016	Macías-Rodríguez <i>et al</i> ., 2014
	Penaeus penicillatus	redtail prawn	N and E	PCR	NO	NO	NO	NO	3	2016	Chou <i>et al</i> ., 1998; Lo <i>et al</i> ., 1996a; Wang <i>et al</i> ., 1998a
	Penaeus semisulcatus	green tiger prawn	N and E	PCR	NO	NO	NO	NO	3	2016	Lo <i>et al</i> ., 1996a; Rajendran <i>et al</i> ., 1999; Wang <i>et al</i> ., 1998a
	Callinectes	cuata	N	PCR (5 sets of primers)	ND	ND	ND	ND	3	2023	Galaviz-Silva <i>et al.</i> , 2004
	arcuatus	swimcrab	N	PCR and sequencing	NO	NO	NO	NO	3	2016	Macías-Rodríguez <i>et al.</i> , 2014
	Charybdis (Charybdis) annulata	banded-legged swimming crab	E and El	PCR	ND	ND	l ⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
Portunidae	Charybdis (Charybdis) japonica	Japanese swimming crab	N	PCR	NO	NO	NO	NO	3	2016	Takahashi <i>et al</i> ., 2003
	Charybdis (Charybdis) lucifer	no common name	E and El	PCR	ND	ND	l ⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
	Charybdis	ridged	N and E	PCR	NO	NO	NO	NO	3	2016	Kou <i>et al</i> ., 1998
	(Charybdis) natator	ridged swimming crab	E and El	PCR	ND	ND	I ⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
	Podophthalmus vigil	periscope crab	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
	Portunus sanguinolentus	threespot swimming crab	E and El	PCR	ND	ND	l ²	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2002

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection	Identification	А	В	С	D		Assessed	
	Portunus trituberculatus	gazami crab	N and E and El	qPCR, TEM, histopathology	YES	NO	YES	YES	3	2016	Muhammad and Lotz, 2015
	Thalamita danae	no common name	E and El	PCR	ND	ND	I ⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
Sergestidae	Acetes chinensis	northern mauxia shrimp	N	LAMP, PCR and sequencing	ND	ND	ND	ND	3	2023	Xu <i>et al</i> ., 2021
Sesarmidae	Armases cinereum	squareback marsh crab	N	qPCR only	ND	ND	ND	YES	3	2023	Muhammad <i>et al</i> ., 2020
Sesamuae	Circulium rotundatum	no common name	N	PCR	NO	NO	NO	NO	3	2016	Otta <i>et al</i> ., 1999
Solenoceridae	Solenocera crassicornis	coastal mud shrimp	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain <i>et al</i> ., 2001a
Squillidae	Squilla mantis	spottail mantis squillid	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain <i>et al</i> ., 2001a
Upogebiidae	Austinogebia edulis	no common name	N	PCR	ND	ND	ND	YES	3	2023	Zhu <i>et al</i> ., 2019
	Chhapgarus intermedius	no common name	N	PCR	NO	NO	NO	NO	3	2016	Shahadat Hossain <i>et al.</i> , 2001a; Shahadat Hossain <i>et al.</i> , 2001b
Varunidae	Cyrtograpsus angulatus	no common name	N	PCR, qPCR	NO	NO	NO	NO	3	2016	Martorelli <i>et al</i> ., 2010
	Helice tridens	no common name	N	PCR	NO	NO	NO	NO	3	2016	Kou <i>et al</i> ., 1998
	Neohelice granulata	no common name	N	PCR and sequencing	NO	NO	NO	NO	3	2016	Cavalli <i>et al</i> ., 2013; Marques <i>et al</i> ., 2011
	Atergatis integerrimus	red egg crab	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al.</i> , 2003
Xanthidae	Demania splendida	no common name	E and El	PCR	ND	ND	⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003
	Liagore rubronaculata	no common name	E and El	PCR	ND	ND	I ⁷	YES	3	2023	Sahul Hameed <i>et</i> <i>al</i> ., 2003

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection	Identification	А	В	С	D		Assessed	
			•	Not score	ed (NS)					•	•
Artemiidae	Artemia franciscana	no common name	E	NO – PCR	ND	ND	ND	ND	NS	2023	Sahul Hameed <i>et</i> <i>al.,</i> 2002
Calappidae	Calappa lophos	common box crab	N and El	NO – PCR	NO	NO	NO	NO	NS	2023	Wang <i>et al</i> ., 1998a
Callianassidae	Neotrypaea harmandi	no common name	EI	Dot blot, ISH	YES	YES	YES	YES	NS	2016	Xu <i>et al.</i> , 2007
Lysmatidae	Lysmata vittata	Indian lined shrimp	N	Negative with LAMP, PCR and sequencing	ND	ND	ND	ND	NS	2023	Xu <i>et al.</i> , 2021
Nephropidae	Homarus americanus	American lobster	EI	TaqMan RT-PCR	N/A	N/A	N/A	N/A	NS	2023	Clark <i>et al</i> ., 2013
	Panulirus argus	Caribbean spiny lobster	E and El	TaqMan RT-PCR	l _ə	ND	la	la	NS	2023	Ross <i>et al.,</i> 2019
Palinuridae	Panulirus Iongpipes	longlegged spiny lobster	N and El	NO – PCR	NO	NO	NO	NO	NS	2023	Wang <i>et al.,</i> 1998a
	Panulirus ornatus	ornate spiny lobster	EI	NO – PCR	YES	YES	YES	YES	NS	2023	Rajendran <i>et al.,</i> 1999; Wang <i>et al.,</i> 1998a
Panopeidae	Panopeus obesus	saltmarsh mud crab	N	TaqMan RT-PCR	ND	ND	ND	YES	NS	2023	Muhammed <i>et al.,</i> 2020
	Metapenaeus joyneri	shiba shrimp	N	Negative with LAMP, PCR and sequencing	ND	ND	ND	ND	NS	2023	Xu <i>et al</i> ., 2021
Penaeidae	Penaeus brasiliensis	redspotted shrimp	N	l ₁₀	NO	NO	YES	YES	NS	2023	Cavalli <i>et al</i> ., 2011
	Penaeus schmitti	southern white shrimp	EI	ISH	YES	ND	YES	YES	NS	2023	Unzueta- Bustamante <i>et al</i> ., 2004
Parastacidae	Cherax destructor	yabby crayfish	E and El	NO – histology, dot blot	YES	NO	YES	YES	NS	2023	Edgerton <i>et al</i> ., 2004

⁹ The authors of the study did not differentiate between the two experimental groups and only one out of seven animals with waterborne exposure was low positive using qPCR (499 copies in 0.25 mg of haemolymph).

¹⁰ This study did not indicate if the results for the PCR and sequence analysis was for this host species.

Family	Scientific name	Common	Stage 1: Route	Stage 2: Pathogen	Stage 3: E	vidence of I	nfection		Outcome	Year	References
		name	of infection	Identification	А	В	С	D		Assessed	
	Scylla olivacea	orange mud crab	EI	qPCR	YES	NO	YES	YES	NS	2023	Somboonna <i>et al</i> ., 2010
Portunidae	Scylla	green mud	EI	TaqMan real-time PCR	YES	ND	ND	YES	NS	2023	Gong <i>et al</i> ., 2022
	paramamosain	crab	EI	TaqMan real-time PCR	ND	ND	ND	YES	NS	2023	Kong <i>et al</i> ., 2020
Sesarmidae	Sesarma reticulatum	purple marsh crab	N	TaqMan real-time PCR	ND	ND	ND	YES	NS	2023	Muhammad <i>et al</i> ., 2020
Sicyoniidae	Sicyonia lancifer	knight rock shrimp	N	Negative with LAMP, PCR and sequencing	ND	ND	ND	ND	NS	2023	Xu <i>et al</i> ., 2021
Squillidae	Oratosquilla oratoria	Japanese squillid mantis shrimp	N	Negative with LAMP, PCR and sequencing	ND	ND	ND	ND	NS	2023	Xu <i>et al</i> ., 2021
Thoridae	Eualus sinensis	iso shrimp	N	Negative with LAMP, PCR and sequencing	ND	ND	ND	ND	NS	2023	Xu <i>et al</i> ., 2021
Upogebiidea	Upogebia major	Japanese mud shrimp	N	Negative with LAMP, PCR and sequencing	ND	ND	ND	ND	NS	2023	Xu <i>et al</i> ., 2021
Varunidae	Hemigrapsus sanguineus	Asian shore crab	EI	dot blot, ISH	YES	YES	YES	YES	NS	2023	Xu <i>et al</i> ., 2007

Family	Scientific name	Common name	Stage 1: Route of	Stage 2: Pathogen	Stage 3	: Eviden	ce of Inf	ection	Outcome	Year	References
			infection	Identification	А	В	С	D		Assessed	
Ampullariidae	Pomacea linnaei	no common name	N	LAMP	ND	ND	ND	ND	NS	2023	Bandeira <i>et al.,</i> 2018
Drachiaridae	Brachionus plicatillis	no common name	E	PCR	ND	ND	ND	ND	3	2023	Corre <i>et al</i> ., 2012
Brachionidae	Brachionus urceolaris	no common name	N	PCR	NO	NO	NO	NO	3	2016	Yan <i>et al.,</i> 2004
Eunicidae	Marphysa gravelyi	no common name	N and E	PCR	ND	¹¹	ND	ND	3	2023	Vijayan <i>et al.</i> , 2005
Nereididae	Dendroneresis sp.	N/A	N	PCR and sequencing	YES	NO	YES	NO	1	2016	Esrina <i>et al.,</i> 2012; Esrina <i>et al.,</i> 2013; Haryadi <i>et al.,</i> 2015
Ostreidae	Magallana [Syn. Crassostrea] gigas	Pacific oyster	N	PCR and sequencing	ND	ND	ND	ND	3	2023	Vazquez-Bouchard et al., 2010
Thiaridae	Melanoides tuberculata	red-rim melania	N	LAMP	ND	ND	ND	ND	3	2023	Bandeira <i>et al</i> ., 2018
Veneridae	Meretrix lusoria	Japanese hard clam	E	PCR	YES	YES	ND	ND	2	2023	Chang <i>et al</i> ., 2011

 Table 6: Assessments for infection with WSSV for non-crustaceans

¹¹ In this study, *P. monodon* were fed WSSV infected polycheate worms and the identification of the pathogen was performed using PCR and no sequencing thus the *ad hoc* Group concluded that the detected virus could be from the original material.

4. Results

The *ad hoc* Group agreed that the 32 species meet the criteria for listing as susceptible to infection with WSSV in accordance with Chapter 1.5 of the *Aquatic Code*. These are proposed to be listed in Article 9.9.2 of Chapter 9.9. Infection with WSSV. These species are shown in the table below:

Family	Scientific name	Common name			
Astacidae	Austropotamobius pallipes	white-clawed crayfish			
	Pacifastacus leniusculus	signal crayfish			
	Pontastacus leptodactylus	Danube crayfish			
Calanidae	Calanus pacificus californicus	N/A			
Cambaridae	Faxonius limosus	spinycheek crayfish			
	Procambarus clarkii	red swamp crawfish			
	Procambarus zonangulus	N/A			
Cancridae	Cancer pagurus	edible crab			
Nephropidae	Homarus gammarus	European lobster			
	Nephrops norvegicus	Norway lobster			
Paguridae	Pagurus benedicti	N/A			
Palaemonidae	Palaemon carinicauda	ridgetail prawn			
	Palaemon orientis	N/A			
	Palaemon ritteri	barred grass shrimp			
Palinuridae	Panulirus penicillatus	pronghorn spiny lobster			
	Panulirus versicolor	painted spiny lobster			
Parastacidae	Cherax quadricarinatus	red claw crayfish			
Penaeidae	Metapenaeus ensis	greasyback shrimp			
	Penaeus chinensi	fleshy prawn			
	Penaeus indicus	Indian white prawn			
	Penaeus japonicus	Kuruma prawn			
	Penaeus monodon	giant tiger prawn			
	Penaeus paulensis	Sao Paulo shrimp			
	Penaeus stylirostris	blue shrimp			
	Penaeus vannamei	whiteleg shrimp			
	Trachysalambria curvirostris	southern rough shrimp			
Polybiidae	Liocarcinus depurator	blue-leg swimcrab			
-	Necora puber	velvet swimcrab			
Portunidae	Charybdis (Charybdis) granulata	N/A			
	Portunus sanguinolentus	threespot swimming crab			
	Scylla serrata	Indo-Pacific swamp crab			
Varunidae	Eriocheir sinensis	Chinese mitten crab			

The *ad hoc* Group agreed that *Dendroneresis sp.* (polychaete worms) also met the criteria for listing as susceptible to infection with WSSV in accordance with Chapter 1.5 of the *Aquatic Code*.

Twenty-nine were assessed as having incomplete evidence of susceptibility and were proposed to be included in Section 2.2.2 of Chapter 2.2.8. of the *Aquatic Manual*. These species are shown in the table below:

Family	Scientific name	Common name
Carcinidae	Carcinus maenas	green crab
Ergasilidae	Ergasilus manicatus	N/A
Gecarcinucidae	Spiralothelphusa hydrodroma	N/A
	Vela pulvinata	N/A
Grapsidae	Metopograpsus sp.	N/A
Macrophthalmidae	Macrophthalmus (Mareotis) japonicus	N/A
Ocypodidae	Leptuca pugilator	Atlantic sand fiddler
Palaemonidae	Macrobrachium idella	slender river prawn
	Macrobrachium lamarrei	Kuncho river prawn
	Macrobrachium nipponense	Oriental river prawn
	Macrobrachium rosenbergii	giant river prawn
	Palaemon adspersus	Baltic prawn
Palinuridae	Panulirus homarus	scalloped spiny lobster
	Panulirus polyphagus	Mud spiny lobster
Penaeidae	Metapenaeus dobsoni	kadal shrimp
	Metapenaeus monoceros	speckled shrimp
	Penaeus aztecus	northern brown shrimp
	Penaeus duorarum	northern pink shrimp
	Penaeus merguiensis	banana prawn
	Penaeus setiferus	northern white shrimp
Portunidae	Callinectes sapidus	blue crab
	Charybdis (Charybdis) feriata	crucifix crab
	Portunus pelagicus	blue swimming crab
	Portunus trituberculatus	gazami crab
	Scylla tranquebarica	purple mud crab
Scyllaridae	Scyllarus arctus	lesser slipper lobster
Sergestidae	Acetes sp.	N/A
Sesarmidae	Sesarma sp.	N/A
Varunidae	Helice tientsinensis	N/A

Pathogen-specific positive PCR results have been reported in the seventy-one species listed. These species were proposed to be included in the second paragraph of Section 2.2.2. of Chapter 2.2.8., Infection with WSSV of the *Aquatic Manual*. These species are shown in the table below:

Family	Scientific name	Common name
Alpheidae	Alpheus brevicristatus	teppo snapping shrimp
	Alpheus digitalis	forceps snapping shrimp
	Alpheus japonicus	Japanese snapping shrimp
	Alpheus lobidens	brownbar snapping shrimp
Artemiidae	Artemia salina	brine shrimp

Family	Scientific name	Common name
	Artemia sp.	N/A
	Nikora sp.	N/A
Astacidae	Astacus astacus	noble crayfish
Balanidae	Belanus sp.	N/A
Calappidae	Calappa philargius	spectacled box crab
Cambaridae	Faxonius punctimanus	spothand crayfish
Crangonidae	Crangon affinis	Japanese sand shrimp
Cyclopidae	Apocyclops royi	N/A
Diogenidae	Diogenes nitidimanus	N/A
Dorippidae	Paradorippe granulata	granulated mask crab
Epialtidae	Doclea muricata	N/A
Euphausiidae	Euphausia pacifica	Isada krill
Galenidae	Halimede ochtodes	N/A
Grapsidae	Grapsus albolineatus	N/A
·	Metopograpsus messor	N/A
Hippolytidae	Latreutes anoplonyx	medusa shrimp
	Latreutes planirostris	flatnose shrimp
Leucosiidae	Philyra syndactyla	N/A
Lithodidae	Lithodes maja	stone king crab
Macrophthalmide	Macrophthalmus (Macrophthalmus) sulcatus	N/A
Matutidae	Ashtoret miersii	N/A
	Matuta planipes	flower moon crab
Menippidae	Menippe rumphii	maroon stone crab
Ocypodidae	Gelasimus vocans	orange fiddler crab
o of pouldade	Leptuca panacea	gulf sand fiddler
	Leptuca spinicarpa	spined fiddler
	Minuca longisignalis	gulf marsh fiddler
	Minuca minax	redjointed fiddler
	Minuca rapax	mudflat fiddler
Paguridae	Pagurus angustus	N/A
Palaemonidae	Palaemon gravieri	Chinese ditch prawn
	Palaemon macrodactylus	migrant prawn
	Palaemon pandaliformis	potitinga prawn
	Palaemon pugio	daggerblade grass shrimp
	Palaemon sp.	N/A
Parthenopidae	Parthenope prensor	N/A
Pasiphaeidae	Leptochela gracilis	lesser glass shrimp
Penaeidae	Artemesia longinaris	Argentine stiletto shrimp
	Metapenaeus affinis	jinga shrimp
	Metapenaeus brevicornis	yellow shrimp

Family	Scientific name	Common name
	Parapenaeopsis stylifera	kiddi shrimp
	Penaeus californiensis	yellowleg shrimp
	Penaeus penicillatus	redtail prawn
	Penaeus semisulcatus	green tiger prawn
Portunidae	Callinectes arcuatus	cuata swimcrab
	Charybdis (Charybdis) annulata	banded-legged swimming crab
	Charybdis (Charybdis) japonica	Japanese swimming crab
	Charybdis (Charybdis) lucifer	N/A
	Charybdis (Charybdis) natator	ridged swimming crab
	Podophthalmus vigil	periscope crab
	Portunus sanguinolentus	threespot swimming crab
	Portunus trituberculatus	gazami crab
	Thalamita danae	N/A
Sergestidae	Acetes chinensis	northern mauxia shrimp
Sesarmidae	Armases cinereum	squareback marsh crab
	Circulium rotundatum	N/A
Solenoceridae	Solenocera crassicornis	coastal mud shrimp
Squillidae	Squilla mantis	spottail mantis squillid
Upogebiidae	Austinogebia edulis	N/A
Varunidae	Chhapgarus intermedius	N/A
	Cyrtograpsus angulatus	N/A
	Helice tridens	N/A
	Neohelice granulata	N/A
Xanthidae	Atergatis integerrimus	red egg crab
	Demania splendida	N/A
	Liagore rubronaculata	N/A

During review when a paper referenced another that discussed non-crustacean animals and their susceptibility to WSSV those papers were reviewed and the assessment of the non-crustacean animals was included in Table 6. The scores provided for the non-crustacean species were based on criteria which had been specifically set for crustaceans. As such, these scores are not necessarily representative of the true susceptibility of these species to WSSV. These scores are provided for reference, as some of these species may be used as feed for crustaceans.

5. Naming convention for susceptible species

The scientific names of the host species are in accordance with the World Register of Marine Species (WoRMS) https://www.marinespecies.org/index.php.

The common names of host species are in accordance with FAOTERM (http://www.fao.org/faoterm/collection/faoterm/en/). Where a common name was not found in FAOTERM, the naming was done in accordance with https://www.sealifebase.ca.

6. Comments on the *ad hoc* Group's rationale and decision-making

'Inconclusive' was used to distinguish situations where more information was provided than would have been assessed as 'Not-determined' but the *ad hoc* Group could not conclude that the criterion was met. Each time inconclusive was used within the assessment table, the *ad hoc* Group provided additional information in a footnote. The *ad hoc* Group treated 'Inconclusive' as 'Not-determined' when making their final assessment.

The *ad hoc* Group agreed that while the ideal situation was two papers with a score of '1', a single robust study scoring '1' was also enough to conclude susceptibility of a species in the absence of conflicting evidence. Additional studies were still reviewed to check for any supporting or conflicting evidence. When additional papers were identified but the *ad hoc* Group did not feel that they were necessary to assess comprehensively because the species had already been determined as susceptible by other studies, these references were only noted in the list of references (Section 7).

The *ad hoc* Group did not review papers that had previously been reviewed in 2016 unless these papers were referenced in a more recently published paper and there was considered a rationale to assess the paper again. If a paper was reviewed in both 2016 and 2023, the year of assessment reflected the most recent assessment and was recorded as 2023.

7. Article 1.5.9 Listing of Susceptible species at a taxonomic ranking of Genus or higher

The *ad hoc* Group considered Article 1.5.9., Listing of susceptible species at a taxonomic ranking of Genus or higher, and determined that it is applicable for the susceptible species for WSSV identified.

8. References

BANDEIRA, J.T., MORAIS, R.S.M.M., SILVA, R.P.P., MENDES, E.S., SILVA, S.M.B.C. & SANTOS, F.L. (2018). First report of white spot syndrome virus in wild crustaceans and mollusks in the Paraíba River, Brazil. *Aquaculture Research*, **50**, 680-684.

BATEMAN, K.S., MUNRO, J., UGLOW, B., SMALL, H.J. & STENTIFORD, G.D. (2012a). Susceptibility of juvenile European lobster *Homarus gammarus* to shrimp products infected with high and low doses of white spot syndrome virus. *Disease of Aquatic Organisms*, **100**, 169-184.

BATEMAN, K.S., TEW, I., FRENCH, C., HICKS, R.J., MARTIN, P., MUNRO, J. & STENTIFORD, G.D. (2012b). Susceptibility to infection and pathogenicity of white spot disease (WSD) in non-model crustacean host taxa from temperate regions. *Journal of Invertebrate Pathology*, **110**, 340–351.

BAUMGARTNER, W. A., HAWKE, J. P., BOWLES, K., VARNER, P. W. & HASSON, K. W. (2009). Primary diagnosis and surveillance of white spot syndrome virus in wild and farmed crawfish (*Procambarus clarkii, P. zonangulus*) in Louisiana, USA. *Disease of Aquatic Organisms*, **85**, 15–22.

BLAYLOCK R.B., CURRAN S.S. & LOTZ J.M. (2019). White spot syndrome virus (WSSV) in cultured juvenile blue crabs *Callinectes sapidus*: oral versus injection exposure, and feeding frequency effects. *Diseases of Aquatic Organisms*, **133**, 147-156.

CAVALLI, L.S., BATISTA, C.R., NORNBERG, B.F.S., MAYER, F.Q., SEIXAS, F.K., ROMANO, L.A., MARINS, L.F. & ABREU, P.C. (2013). Natural occurrence of white spot syndrome virus and infectious hypodermal and hematopoietic necrosis virus in *Neohelice granulata* crab. *Journal of Invertebrate Pathology*, **114**, 86–88.

CAVALLI, L.S., NORNBERG, B.F.S., NETTO, S.A., POERSCH, L., ROMANO, L.A., MARINS, L.F. & ABREU, P.C. (2010). White spot syndrome virus in wild penaeid shrimp caught in coastal and offshore waters in the southern Atlantic Ocean. *Journal of Fish Diseases*, **33**, 533–536.

CAVALLI, L.S., ROMANO, L.A., MARINS, L.F. & ABREU, P.C. (2011). First Report of white spot syndrome virus in farmed and wild penaeid shrimp from Lagoa Dos Patos Estuary, Southern Brazil. *Brazilian Journal of Microbiology*, **42**, 1176–1179.

CHANG, P.S., CHEN, H.C. & WANG, Y.C. (1998b) Detection of white spot syndrome associated baculovirus in experimentally infected wild shrimp, crab and lobsters by in situ hybridization. *Aquaculture*, **164**, 233–242.

CHANG, P.S., CHEN, L.J. & WANG, Y.C. (1998a). The effect of ultraviolet irradiation, heat, pH, ozone, salinity and chemical disinfectants on the infectivity of white spot syndrome baculovirus. *Aquaculture*, **166**, 1–17.

CHANG, Y.S., CHEN, T.C., LIU, W.J., HWANG, J.S., KOU, G.H. & LO, C.F. (2011). Assessment of the roles of copepod *Apocyclops royi* and bivalve mollusk *Meretrix lusoria* in white spot syndrome virus transmission. *Marine Biotechnology*, **13**, 909–917.

CHANG, Y.S., LIU, W.J., CHEN, T.C., CHAN, T.Y., LIU, K.F., CHUANG, J.C., KOU, G.H., LO, C.F. & WANG, H.C. (2012). Feeding hermit crabs to shrimp broodstock increases their risk of WSSV infection. *Disease of Aquatic Organisms*, **98**, 193–199.

CHAPMAN, R.W., BROWDY, C.L., SAVIN, S., PRIOR, S. & WENNER, E. (2004). Sampling and evaluation of white spot syndrome virus in commercially important Atlantic penaeid shrimp stocks. *Diseases of Aquatic Organisms*, **59**, 179-185

CHEN, L.L., LO, C.F., CHIU, Y.L., CHANG, C.F. & KOU, G.H. (2000). Natural and experimental infection of white spot syndrome virus (WSSV) in benthic larvae of mud crab *Scylla serrata*. *Disease of Aquatic Organisms*, **40**, 157–161.

CHOU, H.Y., HUANG, C.Y., LO, C.F. & KOU, G.H. (1998). Studies on transmission of white spot syndrome associated baculovirus (WSBV) in *Penaeus monodon* and *P. japonicus* via waterborne contact and oral ingestion. *Aquaculture*, **164**, 263–276.

CLARK, K.F., ACORN, A.R. & GREENWOOD, S.J. (2013). A transcriptomic analysis of American lobster (*Homarus americanus*) immune response during infection with the bumper car parasite *Anophryoides haemophila*. *Developmental* & *Comparative Immunology*, **40**(2), 112-122.

CORBEL, V., ZUPRIZAL, Z., SHI, C., HUANG, SUMARTONO, ARCIER, J.M. & BONAMI, J.R. (2001). Experimental infection of European crustaceans with white spot syndrome virus (WSSV). *Journal of Fish Diseases*, **24**, 377–382.

CORRE, V., FAISIN, J., CARTON-KAWAGOSHI, R.J., ELLE, B.J., TRAIFLGAR, R.F. & CAIPANG, C.M. (2012). Evidence of WSSV transmission from the rotifer (*Brachionus plicatilis*) to the black tiger shrimp (*Penaeus mondon*) postlarvae and means to control rotifer resting eggs using industrial disinfectants. *Aquaculture, Aquarium, Conservation & Legislation, International Journal of the Bioflux Society*, **5**(1), 64-68

CORTEEL, M., DANTAS-LIMA, J.J., TUAN, V.V., THUONG, K.V., WILLE, M., SANZ, V.A., PENSAERT, M.B., SORGELOOS, P. & NAUWYNCK, H.J. (2012) Susceptibility of juvenile *Macrobrachium rosenbergii* to different doses of high and low virulence strains of white spot syndrome virus (WSSV). *Disease of Aquatic Organisms*, **100**, 211–218.

CUÉLLAR-ANJEL, J., WHITE-NOBLE, B., SCHOFIELD, P., CHAMORRO, R. & LIGHTNER, D.V. (2012). Report of significant WSSV-resistance in the Pacific white shrimp, *Litopenaeus vannamei*, from a Panamanian breeding program. *Aquaculture*, **368–369**, 36–39.

DAI Y., WANG Y., ZHAO L., QIN Z., YUAN J., QIN Q., LIN L. & LAN J. (2016). A novel L-type lectin was required for the multiplication of WSSV in red swamp crayfish (*Procambarus clarkii*). *Fish & Shellfish Immunology*, **2016 Aug**; 55:48-55.

DING, Z., YAO, Y., ZHANG, F., WAN, J., SUN, M., LIU, H., ZHOU, G., TANG, J., PAN, J., XUEB, H. & ZHAO, Z. (2015). The first detection of white spot syndrome virus in naturally infected cultured Chinese mitten crabs, *Eriocheir sinensis* in China. *Journal of Virological Methods*, **220**, 49–54.

DU, H., DAI, W., HAN, X., LI, W., XU, Y. & XU, Z. (2008). Effect of low water temperature on viral replication of white spot syndrome virus in *Procambarus clarkii*. *Aquaculture*, **277**, 149–151.

DUAN, Y., LI, J., ZHANG, Z., LI, J., GE, Q. & LIU, P. (2015). The role of oncoprotein NM23 gene from *Exopalaemon carinicauda* is response to pathogens challenge and ammonia-N stress. *Fish & Shellfish Immunology*, **47**, 1067–1074.

EDGERTON, B.F. (2004). Susceptibility of the Australian freshwater crayfish *Cherax destructor albidus* to white spot syndrome virus (WSSV). *Disease of Aquatic Organisms*, **59**, 187–193.

ESRINA, D., ARJITO, S., HADITOMO, A.H.C. & CHILMAWATI, D. (2012). The white spot syndrome virus (WSSV) load in *Dendronereis spp. Journal of Coastal Development*, **15**, 270–275.

ESRINA, D., VERRETH, J.A.J., PRAYITNO, S.B., ROMBOUT, J.H.W.M., VLAK, J.M. & VERDEGEM, M.C.J. (2013). Replication of white spot syndrome virus (WSSV) in the polychaete *Dendronereis spp. Journal of Invertebrate Pathology*, **114**, 7–10.

FENG, W.R., ZHANG, M., SU, Y.Q., WANG, J., WANG, Y.T. & MAO, Y. (2014). Identification and analysis of a *Marsupenaeus japonicus* ferritin that is regulated at the transcriptional level by WSSV infection. *Gene*, 544, 184–190.

FLEGEL, T.W. (2013). Special topic review: major viral diseases of the black tiger prawn (*Penaeus monodon*) in Thailand. *World Journal of Microbiology & Biotechnology*, **13**, 433–442.

GALAVÍZ-SILVA, L., MOLINA-GARZA, Z.J., ALCOCER-GONZÁLEZ, J.M., ROSALES-ENCINAS, J.L. & IBARRA-GÁMEZ, C. (2004) White spot syndrome virus genetic variants detected in Mexico by a new multiplex PCR method. *Aquaculture*, **242**, 53-68.

GAO, H., KONG, J., LI, Z., XIAO, G. & MENG, X. (2011). Quantitative analysis of temperature, salinity and pH on WSSV proliferation in Chinese shrimp *Fenneropenaeus chinensis* by real-time PCR. *Aquaculture*, **312**, 26–31.

GAO, M., LI, F., XU, L. & ZHU, X. (2014). White spot syndrome virus strains of different virulence induce distinct immune response in *Cherax quadricarinatus*. *Fish & Shellfish Immunology*, **39**, 17–23.

GHOLAMHOSEINI, B., AFSHARNASAB, M. & MOTALLEBI, A.A. (2013). Rate (ROI) and severity (SOI) of infection of white spot disease in cultured and captured penaeid shrimps in the Persian Gulf using histopathology and polymerase chain reaction. *Iranian Journal of Fisheries Sciences*, **12(2)**, 335–347.

GONG, J., PAN, X., ZHOU, X. & ZHU, F. (2023). Dietary quercetin protects *Cherax quadricarinatus* against white spot syndrome virus infection. *Journal of Invertebrate Pathology*, **198**, 107931.

GONG, S.J., KIM, Y.J., CHOI, M.R. & KIM, S.K. (2010). Experimental infection for the neutralization of white spot syndrome virus (WSSV) in wild captured sand shrimp, *Crangon affinis*. *Journal of Life Science*, **20(9)**, 1294–1298.

GOPALAKRISHNAN, A., RAJKUMAR, M., SUN, J., WANG, M. & KUMAR, K.S. (2011). Mud crab, *Scylla tranquebarica (Decapoda: Portunidae)*, a new host for the white spot syndrome virus. *Aquaculture Research*, **42**, 308-312.

GUDKOVS, N., MURWANTOKO, M., & WALKER, P.J. (2014). Stability of the WSSV ORF94 VNTR genotype marker during passage in marine shrimp, freshwater crayfish and freshwater prawns. *Disease of Aquatic Organisms*, **111**, 249–257.

HARYADI, D., VERRETH, J.A.J., VERDEGEM, M.C.J. & VLAK, J.M. (2015). Transmission of white spot syndrome virus (WSSV) from *Dendronereis spp.* (Peters) (*Nereididae*) to penaeid shrimp. *Journal of Fish Diseases*, **38**, 419–428.

HOSSAIN, M.S, CHAKRABORTY, A., JOSEPH, B., OTTA, S.K., KARUNASAGAR, I. & KARUNASAGAR, I. (2001a). Detection of new hosts for white spot syndrome virus of shrimp using nested polymerase chain reaction. *Aquaculture*, **198**, 1–11.

HOSSAIN, M.S., OTTA, S.K., KARUNASAGAR, I. & KARUNASAGA, I. (2001b).Detection of white spot syndrome virus (WSSV) in wild capture shrimp and in non-cultured crustaceans from shrimp ponds in Bangladesh by polymerase chain reaction. *Fish Pathology*, **36(2)**, 93–95.

HUANG, C.H., ZHANG, L.R., ZHANG, J.H., XIAO, L.C., WU, Q.J., CHEN, D.H. & LI, J.K. (2001). Purification and characterization of white spot syndrome virus (WSSV) produced in an alternate host: crayfish, *Cambarus clarkii*. *Virus Research*, **76**, 115–125.

JANG, I.K., MENG, X.H., SEO, H.C, CHO, Y.R., KIM, B.R., AYYARU, G. & KIM, J.S. (2009). A TaqMan realtime PCR assay for quantifying white spot syndrome virus (WSSV) infections in wild broodstock and hatcheryreared postlarvae of fleshy shrimp, *Fenneropenaeus chinensis*. *Aquaculture*, **287**, 40–45.

JIRAVANICHPAISAL, P., SÖDERHÄLL, K. & SÖDERHÄLL, I. (2004). Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. *Fish & Shellfish Immunology*, **17**, 265–275.

JOSEPH, T.C., JAMES, R., RAJAN, L.A., SURENDRAN, P.K. & LALITHA, K.V. (2015). White spot syndrome virus infection: Threat to crustacean biodiversity in Vembanad Lake, India. *Biotechnology Reports*, **7**, 51–54.

KANCHANAPHUM, P., WONGTEERASUPAYA, C.W., SITIDILOKRATANA, N., BOONSAENG, V.I., PANYIM, S., TASSANAKAJON, A., WITHYACHURNNARNKUL, B. & FLEGEL, T.W. (1998). Experimental transmission of white spot syndrome virus (WSSV) from crabs to shrimp *Penaeus monodon*. *Disease of Aquatic Organisms*, **34**, 1–7.

KONG, T., LIN, S., GONG, Y., TRAN, N.T., ZHANG, Y., ZHENG, H., MA, H. & LI, S. (2020) Sp-CBL inhibits white spot syndrome virus replication by enhancing apoptosis in mud crab (*Scylla paramamosain*). *Developmental & Comparative Immunology*, **105**, 103580.

KONO, T., SAVAN, R., SAKAI, M. & ITAMI, T. (2004) Detection of white spot syndrome virus in shrimp by loop-mediated isothermal amplification. *Journal of Virological Methods*, **115**, 59-65.

KOU, G.H., PENG, S.E., CHIU, Y.L & LO, C.F. (1998). Tissue distribution of white spot syndrome virus (WSSV) in shrimp and crabs. *Advances in Shrimp Biotechnology*. National Center for Genetic Engineering and Biotechnology, Bangkok, 267–271.

LIGHTNER, D.V., HASSON, K.W., WHITE, B.L. & REDMAN, R.M. (1998). Experimental infection of western hemisphere penaeid shrimp with Asian white spot syndrome virus and Asian yellow head virus. *Journal of Aquatic Animal Health*, **10**, 271–281.

LIU, W., QIAN, D. & YAN, X. (2011b). Proteomic analysis of differentially expressed proteins in hemolymph of *Scylla serrata* response to white spot syndrome virus infection. *Aquaculture*, **314**, 53–57.

LIU, W., QIAN, D. & YAN, X.J. (2011a). Studies on pathogenicity and prevalence of white spot syndrome virus in mud crab, *Scylla serrata* (Forskal), in Zhejiang Province, China. *Journal of Fish Diseases*, **34**, 131–138.

LO, C.F., LEU, G.H., HO, C.H., CHEN, C.H., PENG, S.E., CHEN, Y.T., CHOU, C.M., YEH, P.Y., HUANG, C.J., CHOU, H.Y., WANG, C.H. & KOU, G.H. (1996b). Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. *Disease of Aquatic Organisms*, **25**, 133–141.

LO, C.F., HO, PENG, C.H., CHEN, S.E., HSU, C.H., YA-LIN CHIU, H.C., CHANG, C.F., LIU, K.F., SU, M.S., WANG, C.H. & KOU, G.H. (1996a). White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. *Disease of Aquatic Organisms*, **27**, 215–225.

LO, C.F., HSU, H.C., TSAI, M.F., HO, C.H., PENG, S.E., KOU, G.H. & LIGHTNER, D.V. (1999). Specific genomic DNA fragment analysis of different geographical clinical samples of shrimp white spot syndrome virus. *Disease of Aquatic Organisms*, **35**, 175–185.

MACÍAS-RODRÍGUEZ, N.A., MAÑÓN-RÍOS, N., ROMERO-ROMERO, J.L., CAMACHO-BELTRÁN, E., MAGALLANES-TAPIA, M.A., LEYVA-LÓPEZ, N.E., HERNÁNDEZ-LÓPEZ, J., MAGALLÓN BARAJAS, F.J., PEREZ-ENRIQUEZ, R., SÁNCHEZ-GONZÁLEZ, S. & MÉNDEZ-LOZANO, J. (2014). Prevalence of viral

pathogens WSSV and IHHNV in wild organisms at the Pacific Coast of Mexico. *Journal of Invertebrate Pathology*, **116**, 8–12.

MARQUES, J.S., MÜLLER, I.C., MOSER, J.R., SINCERO, T.C & MARQUES, M.R.F. (2011). Wild captured crab, *Chasmagnathus granulata* (Dana, 1851), a new host for white spot syndrome virus (WSSV). *Aquaculture*, **318**, 20–24.

MARTORELLI, S.R., OVERSTREET, R.M. & JOVONOVICH, J.A. (2010). First report of viral pathogens WSSV and IHHNV in Argentine crustaceans. *Bulletin of Marine Science*, **86(1)**, 117–131.

MENDOZA-CANO, F., SÁNCHEZ-PAZ, A., TERÁN-DÍAZ, B., GALVÁN-ALVAREZ, D., ENCINAS-GARCÍA, T., ENRÍQUEZ-ESPINOZA, T., & HERNÁNDEZ-LÓPEZ, J. (2014). The endemic copepod *Calanus pacificus californicus* as a potential vector of white spot syndrome virus. *Journal of Aquatic Animal Health*, **26**, 113–117.

MENG, X.H., JANG, I.K., SEO, H.C. & CHO, Y.R. (2009). White spot syndrome virus quantification in blue crab *Portunus trituberculatus* hatchery-produced larvae and wild populations by TaqMan real-time PCR, with an emphasis on the relationship between viral infection and crab health. *Aquaculture*, **291**, 18–22.

MOODY, N.J.G., MOHR, P.G., WILLIAMS, L.M., CUMMINS, D.M., HOAD, J., SLATER, J., VALDETER, S.T., COLLING, A., SINGANALLUR, N.B., GARNDER, I.A., GUDKOVS, N. & CRANE, M.S.J. (2022). Performance characteristics of two real-time TaqMan polymerase chain reaction assays for the detection of WSSV in clinically diseased and apparently healthy prawns. *Diseases of Aquatic Organisms*, <u>https://www.int-res.com/prepress/d03687.html</u>.

MUHAMMAD, M. & LOTZ, J.M. (2015). Prevalence and Infectivity of white spot syndrome virus in the Daggerblad Grass Shrimp *Palaemonetes pugio*. *World Aquaculture* 2015. At Jeju, South Korea.

MUHAMMAD, M., LOTZ, J.M., BLAYLOCK, R.B. & CURRAN, S.S. (2020). White spot syndrome virus in decapods from Mississippi Sound, USA, and susceptibility of *Palaemonetes pugio* and *Uca panacea* to a Chinese isolate. *Diseases of Aquatic Organisms*, **138**,121-131.

NUNAN, L.M. &LIGHTNER, D.V. (1997). Development of a non-radioactive gene probe by PCR for detection of white spot syndrome virus (WSSV). *Journal of Virological Methods*, **63**, 192-201.

OTTA, K., SHUBHA, G., JOSEPH, B., CHAKRABORTY, A., KARUNASAGAR, I. & KARUNASAGAR, I. (1999). Polymerase chain reaction (PCR) detection of white spot syndrome virus (WSSV) in cultured and wild crustaceans in India. *Disease of Aquatic Organisms*, **38**, 67–70.

OVERSTREET, R.M., JOVONOVICH, J. & MA, H. (2009). Parasitic crustaceans as vectors of viruses with an emphasis on three penaeid viruses. *Integrative and Comparative Biology*, **49(2)**, 127–141.

POWELL, J.W.B., BROWDY, C.L. & BURGE, E.J. (2015). Blue crabs *Callinectes sapidus* as potential biological reservoirs for white spot syndrome virus (WSSV). *Diseases of Aquatic Organisms*, **113**, 163-167.

RAJ, N.S., NATHIGA NAMBI, K.S., ABDUL MAJEED, S., TAJU, G., VIMAL, S., FAROOK, M.A. & SAHUL HAMEED, A.S. (2012). High efficacy of white spot syndrome virus replication in tissues of freshwater rice-field crab, *Paratelphusa hydrodomous* (Herbst). *Journal of Fish Diseases*, **35**, 917–925.

RAJAN, P.R., RAMASAMY, P., PURUSHOTHAMAN, V. & BRENNAN, G.P. (2000). White spot baculovirus syndrome in the Indian shrimp *Penaeus monodon* and *P. indicus. Aquaculture*, **184**, 31–44.

RAJENDRAN, K.V., VIJAYAN, K.K., SANTIAGO, T.C. & KROL, R.M. (1999). Experimental host range and histopathology of white spot syndrome virus (WSSV) infection in shrimp, prawns, crabs and lobsters from India. *Journal of Fish Diseases*, **22**, 183–191.

RAMIREZ-DOURIET, C., DE SILVA-DAVILA, R., MENDEZ-LOZANA, J., ESCOBEDO-URIAS, D., LEYVA-ARANA, I. & LOPEZ-MEYER, M. (2005). White spot syndrome virus detection in zooplankton of coastal lagoons and shrimp commercial ponds in Sinaloa, Mexico. *135th Annual Meeting of the American Fisheries Society*. Anchorage, Alaska.

ROSS, E.P., BEHRINGER, D.C. & BOJKO, J. (2019). White spot syndrome virus and the Caribbean spiny lobster, *Panulirus argus*: susceptibility and behavioural immunity. *Journal of Invertebrate Pathology*, **162**, 1-9.

SAHUL HAMEED, A.S., BALASUBRAMANIAN, G., MUSTHAQ, S.S. & YOGANANDHAN, K. (2003). Experimental infection of twenty species of Indian marine crabs with white spot syndrome virus (WSSV). *Disease of Aquatic Organisms*, **57**, 157–161.

SAHUL HAMEED, A.S., CHARLES, M.X. & ANILKUMAR, M. (2000). Tolerance of *Macrobrachium rosenbergii* to white spot syndrome virus. *Aquaculture*, **183**, 207–213.

SAHUL HAMEED, A.S., YOGANANDHAN, K., SATHISH, S., RASHEED, M., MURUGAN, V. & JAYARAMAN, K. (2001). White spot syndrome virus (WSSV) in two species of freshwater crabs (*Paratelphusa hydrodomous* and *P. pulvinata*). *Aquaculture*, **201**, 179–186.

SÁNCHEZ-PAZ, A., TERÁN-DÍAZ, B., ENRÍQUEZ-ESPINOZA, T., ENCINAS-GARCIA, T., VÁZQUEZ-SÁNCHEZ, I. & MENDOZA-CANO, F. (2015). The tidepool shrimp, *Palaemon ritteri* Holmes, constitutes a novel host to the white spot syndrome virus. *Journal of Fish Diseases*, **38(7)**, 613–620.

SARAVANAN, K., KUMAR, P.P., PRAVEENRAJ, J., BARUAH, A, SIVARAMAKRISHNAN, T., KUMAR, T.S., KUMAR, S.P., SANKAR, R.K., ROY, S.D. (2017). Investigation and confirmation of white spot syndrome virus (WSSV) infection in wild caught penaeid shrimps of Andaman and Nicobar Islands, India. *Virus Disease*, **28(4)**, 368-372.

SOMBOONNA, N., MANGKALANAN, S., UDOMPETCHARAPORN, A., KRITTANAI, C., SRITUNYALUCKSANA, K. & FLEGEL, T.W. (2010). Mud crab susceptibility to disease from white spot syndrome virus is species-dependent. *BMC Research Notes*, **3**, 315.

SOOWANNAYAN, C. & PHANTHURA, M. (2011). Horizontal transmission of white spot syndrome virus (WSSV) between red claw crayfish (*Cherax quadricarinatus*) and the giant tiger shrimp (*Penaeus monodon*). *Aquaculture*, **319**, 5–10.

SUPAMATTAYA, K., HOFFMAN, R.W., BOONYARATPALIN, S. & KANCHANAPHUM, P. (1998). Experimental transmission of white spot syndrome virus (WSSV) from black tiger shrimp *Penaeus monodon* to the sand crab *Portunus pelagicus*, mud crab *Scylla serrata* and krill *Acetes sp. Disease of Aquatic Organisms*, **32**, 79–85.

TAKAHASHI, Y., FUKUDA, K., KONDO, M., CHONGTHALEONG, A., NISHI, K., NISHIMURA, M., OGATA, K., SHINYA, I., TAKISE, K., FUJISHIMA, Y. & MATSUMAURA, M. (2003). Detection and prevention of WSSV infection in cultured shrimp. *Asian Aquaculture Magazine November 2003*, 25–27.

TANG, K.F.J., NAVARRO, S.A., PANTOJA, C.R., ARANGUREN, F.L. & LIGHTNER, D.V. (2012). New genotypes of white spot syndrome virus (WSSV) and *Taura syndrome virus* (TSV) from the Kingdom of Saudi Arabia. *Disease of Aquatic Organisms*, **99**, 179–185.

UNZUETA-BUSTAMANTE, M., SILVEIRA-COFFICNY, R., PRIETO, A., AGUIRRE-GUZMÁN, G. & VÁZQUEZ-JUÁREZ, R. (2004). Susceptibility of *Litopenaeus schmitti* and *Cherax quadricarinatus* to white spot syndrome virus (WSSV). *Ciencias Marinas*, **30(4)**, 537-545.

VAZQUEZ-BOUCARD, C., ALVAREZ-RUIZ, P., ESCOBEDO-FREGOSO, C., ANGUIANO-VEGA, G., DE JESUS DURAN-AVELAR, M., PINTO, V.P. & ECOBEDO-BONILLA, C.M. (2010). Detection of white spot syndrome virus (WSSV) in Pacific oyster *Crassostrea gigas*. *Journal of Invertebrate Pathology*, **104**, 245-247.

VIJAYA, K.K., RAJ, V.R., BALASUBRAMANIAN, C.P., ALVANDI, S.V., SEKHAR, V.T. & SANTIAGO, T.C. (2005). Polychaete worms - a vector for white spot syndrome virus (WSSV). *Diseases of Aquatic Organisms*, **63**, 107-111.

WANG, C.S., TSAI, Y.J. & CHEN, S.N. (1998b). Detection of white spot disease virus (WSDV) infection in shrimp using in situ hybridization. *Journal of Invertebrate Pathology*, **72**, 170–173.

WANG, Y.C., LO, C.F., CHANG, P.S. & KOU, G.H. (1998a). Experimental infection of white spot baculovirus in some cultured and wild decapods in Taiwan. *Aquaculture*, **164**, 221–231.

WANG, Y.G., HASSAN, M.D., SHARIFF, M., ZAMRI, S.M. & CHEN, X. (1999). Histopathology and cytopathology of white spot syndrome virus (WSSV) in cultured *Penaeus monodon* from peninsular Malaysia with emphasis on pathogenesis and the mechanism of white spot formation. *Diseases of Aquatic Organisms*, **39(1)**, 1-11.

WANG, Y.T., LIU, W., SEAH, J.N., LAM, C.S., XIANG, J.H., KORZH, V. & KWANG, J. (2002). White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp *Penaeus merguiensis*. *Disease of Aquatic Organisms*, **52**, 249–259.

XU, T., SHAN, X., LI, Y., YANG, T., TENG, G., WU, Q., WANG, C., TANG, K.F.J., ZHANG, Q. & JIN, X. (2021).
 White spot syndrome virus (WSSV) prevalence in wild crustaceans in the Bohai Sea. Aquaculture, 542, 736810.

XU, W.J., SHENG, X.Z., SHI, H., WANG, Z.F. & HU, Z.H. (2007). Artificial infection for *Portunus trituberculatus* with WSSV and histopathological observation. *Journal of Shanghai Fisheries University*, **16(1)**, 33–39.

XUE, R., ZHANG, Q., WEI, Y., ZHU, Y., ZHOU, X., CAO, G. & GONG, C. (2012). Sequential method for rapid early diagnosis of white spot syndrome virus in crayfish. *African Journal of Biotechnology*, **11(58)**, 12232–12239.

YAN, D.C., DONG, S.L., HUANG, J., YU, X.M. & FENG, M.Y. (2004). White spot syndrome virus (WSSV) detected by PCR in rotifers and rotifer resting eggs from shrimp pond sediments. *Disease of Aquatic Organisms*, **59**, 69–73.

YOU, X.X., SU, Y.Q., MAO, Y., LIU, M., WANG, J., ZHANG, M. & WU, C. (2010). Effect of high water temperature on mortality, immune response and viral replication of WSSV-infected *Marsupenaeus japonicus* juveniles and adults. *Aquaculture*, **305**, 133–137.

YUN, J.M., KIM, B.S., HWANG, S.M., KIM, Y.B., CHOI, W.B. & CHOI, T.J. (2014). Artificial infection of the Korean freshwater prawn *Macrobrachium nipponense* (DE HAAN, 1849) (*Decapoda, Palaemonidae*) with white spot syndrome virus (WSSV). *Crustaceana*, **87** (7), 866–880.

ZHAN, W.B., WANG, Y.H., FRYER, J.L., YU, K.K., FUKUDA, H. & MENG, Q.X. (1998). White spot syndrome virus infection of cultured shrimp in China. *Journal of Aquatic Animal Health*, **10**, 405–410.

ZHANG, J.S., DONG, S.L., DONG, Y.W., TIAN, X.L. & HOU, C.Q. (2008). Bioassay evidence for the transmission of WSSV by the harpacticoid copepod *Nitocra sp. Journal of Invertebrate Pathology*, **97**, 33–39.

ZHANG, J-S., DONG, S-L., DONG, Y-W., TIAN, X-L., CAO, Y-C., LI, X-J. & YAN, D-C. (2010). Assessment of the role of brine shrimp *Artemia* in white spot syndrome virus (WSSV) transmission. *Veterinary Research Communications*, **34**, 25-32.

ZHU, F., TWAN, W-H., TSENG, L-C., PENG, S-H. & HWANG, J-S. (2019). First detection of white spot syndrome virus (WSSV) in the mud shrimp *Austinogebia edulis* in Taiwan. *Scientific Reports*, **9**, 18572.

Other references reviewed by the *ad hoc* Group but not referred to in the report above:

AMANO, Y., DIAZ C.L. & MELENA, C.J. (2011) Fine structure analysis of white spot syndrome virus of shrimp. *Brazilian Journal of Veterinary Pathology*, **4(3)**, 214-218.

CHEN C, SHEN J-L., LIANG C-S., SUN Z-C. & JIANG H-F. (2022). First discovery of beta-sitosterol as a novel antiviral agent against white spot syndrome virus. *International Journal of Molecular Sciences*, **23(18)**,10448.

CHOU, H-Y., HUANG, C-Y., WANG, C-H., CHIANG, H-C., & LO, C-F. (1995). Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. *Diseases of Aquatic Organisms*, **23**, 165-173.

CUI, C., LIANG, Q., TANG, X., XING, J., SHENG, X.& ZHAN, W. (2020). Differential apoptotic responses of hemocyte subpopulations to white spot syndrome virus infection in *Fenneropenaeus chinensis*. *Frontiers in Immunology*, **55**, 48-55.

CUI, C., ZHU, L., TANG, X., XING, J., SHENG, X., CHI, H. & ZHAN, W. (2021). Differential white spot syndrome virus-binding proteins in two hemocyte subpopulations of Chinese shrimp (*Fenneropenaeus chinensis*). *Developmental & Comparative Immunology*, **125**, 104215.

DESRINA, PRAYITNO S.B., VERDEGEM M.C.J., VERRETH J.A.J. & VLAK J.M. (2021). White spot syndrome virus host range and impact on transmission. *Reviews in Aquaculture*, **14**, 1843-1860.

DESRINA, VERRETH, J.A.J., PRAYITNO, S.B., ROMBOUT, J.H.W.M., VLAK, J.M. & VEREDEGEM, M.C.J. (2013). Replication of white spot syndrome virus (WSSV) in the polychaete *Dendronereis spp. Journal of Invertebrate Pathology*, **114**, 7-10.

DING, Z., YAO, Y., ZHANG, F., WAN, J., SUN, M., LIU, H., ZHOU, G., TANG, J., PAN, J., XUE, H. & ZHAO, Z. (2015). The first detection of white spot syndrome virus in naturally infected cultured Chinese mitten crabs, *Eriocheir sinensis* in China. *Journal of Virological Methods*, **220**, 49-54.

GHOLAMHOSSEINI A., MOHAMMADI A., AKBARI S. & BANAEE M. (2020). Molecular, histopathologic and electron microscopic analysis of white spot syndrome virus in wild shrimp (*Fenneropenaeus indicus*) in the coastal waters of Iran. *Archives of Virology*, **165**, 1433-1440.

HERNÁNDEZ-MONTIEL, Á., GIFFARD-MENA, I., WEIDMANN, M., BEKAERT, M., ULRICH, K. & BENKAROUN, J. (2022). Virulence and genetic differences among white spot syndrome virus isolates inoculated in *Penaeus vannamei*. *Diseases of Aquatic Organisms*,**152**, 85-98.

HONG, P-P., LI, C., NIU, G-J., ZHAO, X-F & WANG, J-X. (2022). White spot syndrome virus directly activates mTORC1 signalling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp. *PLoS Pathogens*, **8(9)**, e1010808.

HUNG-YUN LIN, JOHN HAN-YOU LIN, HAN-JIA LIN & LI-LI CHEN. (2022). Inhibition of white spot syndrome virus (WSSV) in Pacific white shrimp (*Litopenaeus vannamei*) using polyamine-modified carbon quantum dots. *Methods in Molecular Biology*, **2610**, 67-73.

JIANG, L., XIAO, J., LIU, L., PAN, Y., YAN, S. & WANG, Y. (2017). Characterization and prevalence of a novel white spot syndrome viral genotype in naturally infected wild crayfish, *Procambarus clarkii*, in Shanghai, China. *Virus Disease*, **28(3)**, 250-261.

KIM, M.J., BAEK, E., KIM, J-O., HWANG, J., KWON, M. & KIM, K. (2022). Application of iron flocculation to concentrate white spot syndrome virus in seawater. *Journal of Virological Methods*, **306**, 114554.

LEI, Z.W., HUANG J., SHI, C.Y., ZHANG, L.J. & YU, K.K. (2002). Investigation into the hosts of white spot syndrome virus (WSSV). *Oceanologia et Limnologia Sinica*, **33(3)**, 250–258.

LILLEHAMMER, M., BANGERA, R., SALAZAR, M., VELA, S., ERAZO, E.C., SUAREZ, A., COCK, J., RYE, M. & ROBINSON, N.A. (2020). Genomic selection for white spot syndrome virus resistance in whiteleg shrimp boosts survival under an experimental challenge test. *Scientific Reports*,**10(1)**, 20571.

MAEDA, M., ITAMI, T., MIZUKI, E., TANAKA, R., YOSHIZU, Y., DOI, K., YASUNAGA-AOKI, C., TAKAHASHI, Y. & KAWARABATA, T. (2000). Red swamp crawfish (*Procambarus clarkii*): an alternative experimental host in the study of white spot syndrome virus. *Acta Virologica*, **44(6)**, 371-4.

MENG, C., LIU, L-K., LI, D-L., GAO, R-L., FAN, W-W., WANG, K-J., WANG, H-C. & LIUA, H-P. (2020). White spot syndrome virus benefits from endosomal trafficking, substantially facilitated by a valosin-containing protein, to escape autophagic elimination and propagate in the crustacean *Cherax quadricarinatus*. *Journal of Virology*, **95**, e01570-20.

MILLARD, R.S., BICKLEY, L.K., BATEMAN, K.S., VERBRUGGEN, B., FARBOS, A., LANGE, A., MOORE, K.A., STENTIFORD, G.D., TYLER, C.R., VAN AERLE, R. & SANTOS, E.M. (2022). Resistance to white spot syndrome virus in the European shore crab is associated with suppressed virion trafficking and heightened immune responses. *Frontiers in Immunology*, **13**, 1057421.

NG, Y.S., LEE, D-Y., LIU, C-H., TUNG, C-Y., HE, S-T. & WANG, H-C. (2022). White spot syndrome virus triggers a glycolytic pathway in shrimp immune cells (hemocytes) to benefit its replication. *Frontiers in Immunology*, **13**, 901111.

NGO, T.T.N., SENIOR, A.M., CULINA, A., SANTOS, E.S.A., VLAK, J.M. & ZWART, M.P. (2018). Quantitative analysis of the dose-response of white spot syndrome virus in shrimp. *Journal of Fish Diseases*, **41(11)**, 1733-1744.

NIU, G-J., YAN, M., LI, C., LU, P-Y., YU, Z. & WANG, J-X. (2022). Infection with white spot syndrome virus affects the microbiota in the stomachs and intestines of kuruma shrimp. *Science of the Total Environment*, **839**, 156233.

ONIHARY A.M., RAZANAJATOVO I.M., RABETAFIKA L., BASTARAUD A., HERAUD J.M. & RASOLOFO V. (2021). Genotype diversity and spread of white spot syndrome virus (WSSV) in Madagascar (2012-2016). *Viruses*, **13(9)**, 1713.

PARK, S.C., CHOI, S.K., HAN, S.H., PARK, S., JEON, H.J., LEE, S.C., KIM, K.Y., LEE, Y.S., KIM, J.H.& HAN, J.E. (2020). Detection of infectious hypodermal and hematopoietic necrosis virus and white spot syndrome virus in whiteleg shrimp (*Penaeus vannamei*) imported from Vietnam to South Korea. *Journal of Veterinary Science*, **21(2)**, e31.

PENG, S-E., LO, C-F., LIU, K-F. & KOU, G-H. (1998). The transition from pre-patent to patent infection of white spot syndrome virus (WSSV) in *Penaeus monodon* triggered by pereiopod excision. *Fish Pathology*, **33(4)**, 395-400.

SAHUL HAMEED, A.S., MURTHI, B.L.M., RASHEED, M., SATHISH, S., YOGANANDHAN, K., MURUGAN, V. & JAYARAMAN, K. (2002). An investigation of Artemia as a possible vector for white spot syndrome virus (WSSV) transmission to *Penaeus indicus*. *Aquaculture*, **204**, 1-10.

SANNIGRAHI, S., ARUMUGASAMY, S.K., MATHIYARASU, J., SUDHAKARAN, R. & SUTHINDHIRAN, K. (2021). Detection of white spot syndrome virus in seafood samples using a magnetosome-based impedimetric biosensor. *Archives of Virology*, **166**, 2763-2778.

SHAN, L.P., ZHANG, X., HU, Y., LIU, L. & CHEN, J. (2021). Antiviral activity of esculin against white spot syndrome virus: A new starting point for prevention and control of white spot disease outbreaks in shrimp seedling culture. *Journal of Fish Diseases*, **45(1)**, 59-68.

SHI, Z., HUANG, C., ZHANG, J., CHEN, D. & BONAMI, J.R. (2000). White spot syndrome virus (WSSV) experimental infection of the freshwater crayfish, *Cherax quadricarinatus*. *Journal of Fish Diseases*, **23**, 285-288.

SURYAKODI, S., AHMED, A.N., BADHUSHA, A., KUMAR, S.S., SIVAKUMAR, S., MAJEED, S.A., TAJU, G., RAHAMATHULLA, S. & HAMEED, A.S.S. (2022). First report on the occurrence of white spot syndrome virus, infectious myonecrosis virus and *Enterocytozoon hepatopenaeiin enaeus vannamei* reared in freshwater systems. *Journal of Fish Diseases*, **45(5)**, 699-706.

TRAN, N.T., LIANG, H., ZHANG, M., BAKKY, M.A.H., ZHANG, Y. & LI, S. (2022). Role of cellular receptors in the innate immune system of crustaceans in response to white spot syndrome virus. *Viruses*, **14(4)**, 743.

TRIBAMRUNG, N., BUNNOY, A., CHUCHIRD, N. & SRISAPOOME, P. (2023). The first description of the blue swimming crab (*Portunus pelagicus*) transcriptome and immunological defence mechanism in response

to white spot syndrome virus (WSSV). *Fish & Shellfish Immunology*, **134**, https://doi.org/10.1016/j.fsi.2023.108626

WANG, Q., WHITE, B.L., REDMAN, R.M. & LIGHTNER, D.V. (1999). Per os challenge of *Litopenaeus vannamei* postlarvae and *Farfantepenaeus duorarum* juveniles with six geographic isolates of white spot syndrome virus. *Aquaculture*, **170**, 179-194.

WANG, S., LI, H., WENG, S., LI, C. & HE, J. (2020). White spot syndrome virus establishes a novel IE1/JNK/c-Jun positive feedback loop to drive replication. *iScience*, **23(1)**, 100752.

WANG, X., CHEN, C., ZHANG, N., CHEN, Q., ZHANG, F., LIU, X., LI, F., SHI, Z-L., VLAK, J.M., WANG, M. & HU, Z. 2022 Functional peroral infectivity complex of white spot syndrome virus of shrimp. *Journal of Virology*, 96(24), e0117322.

WEERACHATYANUKUL, W., CHOTWIWATTHANAKUN, C. & JARIYAPONG, P. (2021). Dual VP28 and VP37 dsRNA encapsulation in IHHNV virus-like particles enhances shrimp protection against white spot syndrome virus. *Fish & Shellfish Immunology*, **113**, 89-95.

WEI, H.Y., HUANG, S., YAO, T., GAO, F., JIANG, J.Z. & WANG, J.Y. (2018). Detection of viruses in abalone tissue using metagenomics technology. *Aquaculture Research*, DOI: 10.1111/are.13731

XIAO, B., FU, Q., NIU, S., ZHU, P., HE, J., & LI, C. (2020). Penaeidins restrict white spot syndrome virus infection by antagonizing the envelope proteins to block viral entry. *Emerging Microbes & Infections*, **9**, https://doi.org/10.1080/22221751.2020.1729068

YANG, G., WANG, J., LUO, T. & ZHANG, X. (2019). White spot syndrome virus infection activates Caspase 1-mediated cell death in crustacean. *Virology*, **528**, 37-47.

ZHANG, K., KOIWAI, K., KONDO, H. & HIRONO, I. (2018). White spot syndrome virus (WSSV) suppresses penaeidin expression in *Marsupenaeus japonicus* hemocytes. *Fish & Shellfish Immunology*, **78**, 233-237.

ZHANG, K., KOIWAI, K., KONDO, H. & HIRONO, I. (2018). A novel white spot syndrome virus-induced gene (MjVIG1) from *Marsupenaeus japonicus* hemocytes. *Fish & Shellfish Immunology*, **77**, 46-52.

ZHANG, Y., WEN, J., XU, Y., WANG, H., LU, L., SONG, R. & ZOU, J. (2021). Epigallocatechin-3- gallate inhibits replication of white spot syndrome virus in the freshwater crayfish *Procambarus clarkii*. *Journal of Fish Diseases*, **45(3)**, 445-450.

ZHAO, C., FU, H., SUN, S., QIAO, H., ZHANG, W., JIN, S., JIANG, S., XIONG, Y. & GONG, Y. (2017). Experimental inoculation of oriental river prawn *Macrobrachium nipponense* with white spot syndrome virus (WSSV). *Diseases of Aquatic Organisms*, **126(2)**, 125-134.

ZHOU, X., GONG, J., ZHUANG, Y. & ZHU, F. (2022). Coumarin protects *Cherax quadricarinatus* (red claw crayfish) against white spot syndrome virus infection. *Fish & Shellfish Immunology*, **127**, 74-81.

.../Annexes

Annex 1. List of Participants from 2023 assessment

MEETING OF THE WOAH AD HOC GROUP ON SUSCEPTIBILITY OF CRUSTACEAN SPECIES TO WOAH LISTED DISEASES

14, 21 and 23 March 2023 (virtual)

List of Participants

MEMBERS OF THE AD HOC GROUP

Dr Mark Crane (Chair)

CSIRO Honorary Fellow Australian Centre for Disease Preparedness (ACDP) CSIRO Geelong, AUSTRALIA

Dr Arun Dhar

Professor and Director of Aquaculture Pathology Laboratory School of Animal & Comparative Biomedical Sciences University of Arizona Tucson, UNITED STATES **Dr Kelly Bateman** Crustacean Health Theme Lead Centre for Environment, Fisheries and Aquaculture Science (CEFAS) Dorchester, UNITED KINGDOM

Prof. Han-Ching Wang

Director of International Center for the Scientific Development of Shrimp Aquaculture (ICDSA) Professor, Department of Biotechnology and Bioindustry Sciences National Cheng Kung University (NCKU) Tainan, CHINESE TAIPEI **Dr Jorge Cuéllar-Anjel** International Consultancy on Aquatic Animal Health Bogotá, COLOMBIA

WOAH HEADQUARTERS

Dr Kathleen Frisch Scientific Coordinator for Aquatic Animal Health Standards Department **Dr Patricia Kelly** Scientific Coordinator for Aquatic Animal Health Standards Department

Annex 2. Terms of Reference from 2023 assessment

MEETING OF THE WOAH AD HOC GROUP ON SUSCEPTIBILITY OF CRUSTACEAN SPECIES TO WOAH LISTED DISEASES

Virtual Meeting, November 2023

Terms of reference

Background

Chapter 1.5. Criteria for listing species as susceptible to infection with a specific pathogenic agent of the Aquatic Code, provides criteria for determining which host species are listed as susceptible in Article X.X.2. of each disease-specific chapter in the *Aquatic Code*.

Assessments for all of the WOAH listed diseases are being undertaken progressively by *ad hoc* Groups. Once completed, the revised list of susceptible species in the relevant Article X.X.2. of the *Aquatic Code* is circulated for Member comment and then presented for adoption.

Species, where there is some evidence of susceptibility but insufficient evidence to demonstrate susceptibility are included in the relevant disease-specific chapter in the *Aquatic Manual*.

The *ad hoc* Group on Susceptibility of crustacean species to infection with WOAH listed diseases completed assessments for infection with white spot syndrome virus (WSSV) in June 2016; however there is new scientific evidence that needs to be assessed.

Purpose

The *ad hoc* Group on Susceptibility of crustacean species to infection with WOAH listed diseases will undertake reassessments for infection with WSSV in crustaceans using new scientific evidence since the June 2016 assessments.

Terms of Reference

- 1) Review relevant literature documenting susceptibility of species for infection with WSSV and apply the criteria, as outlined in Chapter 1.5. Criteria for listing species as susceptible to infection with a specific pathogen, to potential host species.
- 2) Determine susceptible species for infection with WSSV based on Article 1.5.7.
- 3) Determine species with incomplete evidence for susceptibility for infection with WSSV based on Article 1.5.8.

Expected outputs of the ad hoc Group

- 1) Propose a list of susceptible species for inclusion in the Article 9.9.2. of Chapter 9.9., Infection with WSSV, in the *Aquatic Code*.
- 2) Propose a list of species with incomplete evidence for susceptibility for inclusion in Section 2.2.2 and Section 2.2.2. of Chapter 2.2.8. Infection with WSSV of the *Aquatic Manual*.
- 3) A report for consideration by the Aquatic Animals Commission at its February 2024 meeting.

Annex 3. List of Participants from 2016 assessment

MEETING OF THE WOAH AD HOC GROUP ON SUSCEPTIBILITY OF CRUSTACEAN SPECIES TO WOAH LISTED DISEASES

Paris, 1-3 June 2016

List of Participants

* Note that the titles and affiliations of the participants represent information from the time of the assessment in 2016 and may not reflect current information in 2023.

MEMBERS OF THE AD HOC GROUP

Dr Grant D. Stentiford (Chair)	Dr Mark Crane	Dr Sophie St-Hilaire
Director, European Union	Senior Principal Research	Department of Health
Reference Laboratory for	Scientist	Management
Crustacean Diseases	Research Group Leader, AAHL	Atlantic Veterinary College
Team Leader, Pathology and	Fish Diseases Laboratory	University of Prince Edward
Molecular Systematics	AUSTRALIA	Island
Centre for Environment,		CANADA
Fisheries and Aquaculture		
Science (Cefas)		
UNITED KINGDOM		

Dr Temdoung Somsiri	
Consultant	
THAILAND	

Dr Jorge Cuéllar-Anjel Director of Shrimp Pathology and Research Department PANAMA

WOAH HEADQUARTERS

Dr Gillian Mylrea Deputy Head International Trade Department **Dr Gowoon Jung** Intern International Trade Department