Report of the WOAH *ad hoc* Group on susceptibility of crustacean species to infection with WOAH listed diseases

Table of Contents

1.	Introduction	2
2.	Methodology	2
	Scoring and assessments	
	Results	
5.	Naming convention for susceptible species	9
6.	Comments on the ad hoc Group's rationale and decision-making	9
7.	Article 1.5.9 Listing of Susceptible species at a taxonomic ranking of Genus or higher	9
8.	References	9

List of Annexes

Annex 1. List of Participants	12
Annex 2. Terms of Reference	13

World Organisation for Animal Health Founded as OIE

Standards Department [ACC.Secretariat@woah.org] 12, rue de Prony 75017 Paris, France T. +33 (0)1 44 15 18 88 F. +33 (0)1 42 67 09 87 woah@woah.org www.woah.org

1. Introduction

This report covers the work of the WOAH *ad hoc* Group on Susceptibility of crustacean species to infection with WOAH listed diseases (the *ad hoc* Group) who met virtually on 14, 21 and 23 March 2023.

The list of participants and the Terms of Reference are presented in Annex 1 and Annex 2, respectively.

2. Methodology

The *ad hoc* Group applied criteria, as outlined in Chapter 1.5. Criteria for listing species as susceptible to infection with a specific pathogen, of the WOAH *Aquatic Animal Health Code* (the *Aquatic Code*), to potential host species in order to determine susceptibility to infection with decapod iridescent virus 1 (DIV1).

A three-stage approach, as described in Article 1.5.3, was used to assess the susceptibility of a species to infection with DIV1 and was based on:

Stage 1. criteria to determine whether the route of transmission is consistent with natural pathways for the infection (as described in Article 1.5.4.);

Stage 2. criteria to determine whether the pathogenic agent has been adequately identified (as described in Article 1.5.5.);

Stage 3. criteria to determine whether the evidence indicates that presence of the pathogenic agent constitutes an infection (as described in Article 1.5.6.):

- A. The pathogenic agent is multiplying in the host, or developing stages of the pathogenic agent are present in or on the host;
- B. Viable pathogenic agent is isolated from the proposed susceptible species, or infectivity is demonstrated by way of transmission to naïve individuals;
- C. Clinical or pathological changes are associated with the infection;
- D. The specific location of the pathogen corresponds with the expected target tissues.

Details of the three-stage approach applied by the *ad hoc* Group for infection with DIV1, including any additional considerations are described below:

2.1. Stage 1: Criteria to determine whether the route of transmission is consistent with natural pathways for the infection:

Table 1 describes the route of transmission for infection with DIV1 used by the *ad hoc* Group when applying Stage 1 to assess susceptibility to infection with DIV1, as well as some considerations.

Table 1: Route of transmission for infection with DIV1

Route of transmission	Considerations
Natural exposure included situations where infection had occurred without experimental intervention (e.g. infection in wild or farmed populations) OR	Experimental infection via invasive routes (i.e. injection) was not considered a natural route of transmission and therefore such studies were not evaluated.
Non-invasive experimental procedures such as cohabitation with infected hosts or infection by immersion or <i>per os.</i>	

2.2. Stage 2: Criteria to determine whether the pathogenic agent has been adequately identified:

Table 2 describes the pathogen identification methods for infection with DIV1 used by the *ad hoc* Group when applying Stage 2 to assess susceptibility to infection with DIV1, as well as some considerations. These criteria was developed in consultation with the Reference Laboratory expert for DIV1 to ensure alignment between these criteria and the pathogen identification methods included in the draft chapter of the *Manual of Diagnostic Tests for Aquatic Animals* (the *Aquatic Manual*).

Table 2: Pathogen identification for infection with DIV1

Pathogen Identification (DIV1)	Considerations
Specific TaqMan real-time PCR (e.g. Qiu <i>et al</i> ., 2020)	Because of the specificity of the TaqMan real-time PCR, sequence analysis was not considered
OR	necessary for pathogen confirmation.
PCR or nested PCR followed by sequence analysis (e.g. Qiu <i>et al.</i> , 2017)	Recombinase polymerase amplification (RPA) targeting the ATPase gene was used in some
OR	studies for pathogen identification, which was
<i>In-situ</i> hybridisation using a DIV1-specific probe (e.g. Qiu <i>et al.</i> , 2017)	deemed acceptable when there was supporting evidence of infection with DIV1.
OR	
<i>In-situ</i> DIG-labelling-loop-mediated DNA amplification (ISDL) (e.g. Chen <i>et al.</i> , 2019)	

2.3. Stage 3: Criteria to determine whether the evidence indicates that presence of the pathogenic agent constitutes an infection:

Table 3 describes the evidence of infection used by the *ad hoc* Group when applying Stage 3 to assess susceptibility to infection with DIV1.

Table 3: Evidence of infection with DIV1

Evidence of infection										
A: Replication	B: Viability / Infectivity	C: Pathology / Clinical signs*	D: Location							
Presence of characteristic inclusion bodies and positive labelling of inclusion bodies by ISH or IFAT OR	Single passage bioassay to a SPF (target pathogen) of any susceptible host species and confirmation of pathogen identification.	Reddish body; hepatopancreatic atrophy with faded colour; empty digestive system; In <i>M.</i> <i>rosenbergii</i> : white triangular area under the	Haematopoietic tissues, cuticular epithelium, lymphoid organ, haemocytes in gills, pereiopods, hepatopancreatic sinus.							
Presence of virions in inclusion bodies by TEM		carapace at the base of the rostrum.								
OR										
Demonstration of high copy number by a specific TaqMan PCR (e.g. Qiu <i>et al.</i> , 2020)										
OR										
Demonstration of increasing copy number over time with qPCR with confirmatory PCR/sequencing specific for infectious virus										
OR										
Serial passage from individual to SPF individual of the same species.										

* Pathology/Clinical signs may be non-specific, variable and include some or all of the characteristics listed.

3. Scoring and assessments

Table 4 describes the different scores and outcomes of the assessments undertaken by the *ad hoc* Group.

Table 4: Scores

Score	Outcome
1	Species assessed as susceptible (as described in Article 1.5.7.). These species were proposed for inclusion in Article 9.3.2. of Chapter 9.3., Infection with DIV1, of the <i>Aquatic Code</i> and Section 2.2.1. of Chapter 2.2.X., Infection with DIV1, of the <i>Aquatic Manual</i> .
2	Species assessed as having incomplete evidence for susceptibility (as described in Article 1.5.8.) were proposed for inclusion in Section 2.2.2., Species with incomplete evidence for susceptibility of Chapter 2.2.X., Infection with DIV1, of the Aquatic Manual.
3	Species assessed as not meeting the criteria or for which there was unresolved or conflicting information. These species were not proposed for inclusion in either the Aquatic Code or the Aquatic Manual.
	The exceptions were species where pathogen-specific positive PCR results have been reported but an active infection has not been demonstrated. These species were proposed for inclusion in the second paragraph in Section 2.2.2. Species with incomplete evidence for susceptibility of Chapter 2.2.X. Infection with DIV1, of the <i>Aquatic Manual</i> .
4	Species assessed as non-susceptible.
NS	Species not scored due to insufficient or irrelevant information.

Table 5 summarises all of the assessments for host susceptibility to infection with DIV1 undertaken by the *ad hoc* Group together with the outcomes and relevant references. For Stage 3, as described in Chapter 1.5. of the *Aquatic Code*, evidence to support criterion A alone was sufficient to determine infection. In the absence of evidence to meet criterion A, satisfying at least two of criteria B, C or D were required to determine evidence of infection.

Table 5: Assessments for infection with DIV1

Family	Scientific name	Common name	Stage 1: Route of	Stage 2: Pathogen Identification	Stage 3	: Eviden	ce of Infe	ection	Outcome	References
			infection		А	В	С	D		
Score 1										
Cambaridae	Procambarus clarkii	red swamp crawfish	N	TaqMan real-time PCR	YES	ND	ND	YES	1	Qui <i>et al</i> ., 2019
Palaemonidae	Macrobrachium nipponense	Oriental river prawn	N	TaqMan real-time PCR	YES	ND	ND	ND	1	Qui <i>et al</i> ., 2019
Palaemonidae	Macrobrachium rosenbergii	giant river prawn	Ν	nested-PCR and RPA (ATPase gene)	YES	ND	YES	YES	1	Guixiang <i>et al.</i> , 2022

Family	Scientific name	Common name	Stage 1: Route of	Stage 2: Pathogen	Stage 3	: Eviden	ce of Infe	ection	Outcome	References
			infection	Identification	А	В	С	D		
			N	TaqMan real-time PCR	YES	ND	YES	YES	1	Qui <i>et al</i> ., 2019
	Palaemon carinicauda	ridgetail prawn	E	TaqMan real-time PCR	YES	ND	YES	YES	1	Chen <i>et al</i> ., 2019
Parastacidae	Cherax quadricarinatus ¹	red claw crayfish	N	PCR (MCP gene) and sequencing	YES	ND	ND	YES	1	Xu <i>et al</i> ., 2016
	quauncannalus		N	NO – nested-PCR	ND	ND	ND	ND	NS	Yang <i>et al</i> ., 2020
	Penaeus chinensis	flooply prown	Ν	nested-PCR and RPA (ATPase gene)	YES	ND	YES	YES	1	Guixiang <i>et al</i> ., 2022
	Penaeus chinensis	fleshy prawn	N	TaqMan real-time PCR	ND	ND	ND	YES	2	Qiu <i>et al</i> ., 2018a
	Democras innominus	kuruma prawn	E and El	TaqMan real-time PCR	YES	YES	YES	YES	1	Qiu <i>et al.</i> , 2023
	Penaeus japonicus		EI	TaqMan real-time PCR	N/A	N/A	N/A	N/A	NS	He <i>et al</i> ., 2021b
Penaeidae			N and EI	semi-nested-PCR (MCP gene) and sequencing	YES	YES	YES	YES	1	Sanguanrut <i>et al</i> ., 2022
	Penaeus vannamei ¹	whiteleg shrimp	N	TaqMan real-time PCR, sequencing	YES	ND	YES	YES	1	Qui <i>et al</i> ., 2021
			N and E	TaqMan real-time PCR	YES	YES	ND	YES	1	Qiu <i>et al</i> ., 2018a
			N and E and EI	nested-PCR and sequencing	YES	YES	YES	YES	1	Qiu <i>et al</i> ., 2017
Portunidae	Portunus trituberculatus	gazami crab	E and El	TaqMan real-time PCR, nested-PCR	YES	YES	²	YES	1	Qiu <i>et al.</i> , 2022
		·	Sc	ore 2						
Penaeidae	Penaeus monodon	giant tiger prawn	E and El	TaqMan real-time PCR, nested-PCR	YES	YES	ND	ND	1 ³	He et al., 2021a

Family	Scientific name	Common name	Stage 1: Route of	Stage 2: Pathogen	Stage 3	: Eviden	ce of Inf	ection	Outcome	References
			infection	Identification	А	В	С	D		
			N	nested-PCR (ATPase and MCP genes) and sequencing	l ⁴	ND	NO	YES	2	Srisala et al., 2021
			N	nested-PCR and sequencing	ND	ND	ND	ND	3	Srisala et al., 2020
			Sco	ore 3						
Ampullariidae	Pomacea canaliculata	channeled applesnail	Ν	TaqMan real-time PCR	ND	ND	ND	NO	3	Qiu <i>et al</i> ., 2021
Palaemonidae	Macrobrachium superbum ⁵		N	TaqMan real-time PCR	ND	ND	ND	ND	3	Qui <i>et al</i> ., 2019
Salticidae	Plexippus paykulli ⁵		N	TaqMan real-time PCR	ND	ND	ND	NO	3	Qiu <i>et al</i> ., 2021
Varunidae	Helice tientsinensis ⁵		N	TaqMan real-time PCR	ND	ND	ND	ND	3	Qiu <i>et al</i> ., 2022
varuniuae	Hemigrapsus penicillatus	Japanese shore crab	N	TaqMan real-time PCR	ND	ND	ND	ND	3	Qiu <i>et al</i> ., 2022
Not scored (NS)										
Penaeidae	Penaeus merguiensis	banana prawn	EI	nested-PCR and sequencing	N/A	N/A	N/A	N/A	NS	Liao <i>et al</i> ., 2020

¹ An outbreak was reported in this host species (WAHIS report IDs IN_17915, FUR_18004, FUR_152709) and DIV1 infection was confirmed by the laboratory, which became the WOAH Reference Laboratory in 2022.

² Non-specific clinical signs; i.e. decreased motility, retarded reaction and anorexia.

³ The *ad hoc* Group determined that the evidence in the paper scored '1' is not sufficient for a final assessment of '1' as the paper had no details of any disease in the animals fed with the infected tissues although infectious virus was re-isolated by injecting a large inoculum into experimental animals. There are no other reports to corroborate susceptibility therefore the *ad hoc* Group assessed this species as an overall score of '2'.

⁴ In situ hybridisation showed positive results in nuclei only.

⁵ No common name was available on FAOTerm or www.sealifebase.se.

Assessment Table Key

N: Natural infection

E: Experimental (non-invasive)

EI: Experimental invasive

YES: Demonstrates criterion is met

NO: Criterion is not met

I: Inconclusive

ND: Not determined

NS: Not scored

N/A: Not applicable

4. Results

The *ad hoc* Group agreed that nine species, fleshy prawn (*Penaeus chinensis*), gazami crab (*Portunus trituberculatus*), giant river prawn (*Macrobrachium rosenbergii*), kuruma prawn (*Penaeus japonicus*), Oriental river prawn (*Macrobrachium nipponense*), red claw crayfish (*Cherax quadricarinatus*), red swamp crawfish (*Procambarus clarkii*), ridgetail prawn (*Palaemon carinicauda*), and whiteleg shrimp (*Penaeus vannamei*), meet the criteria for listing as susceptible to infection with DIV1 in accordance with Chapter 1.5. and therefore should be proposed to be included in Article 9.3.2. of the *Aquatic Code*. All of these species, except fleshy prawn (*Penaeus chinensis*), gazami crab (*Portunus trituberculatus*) and kuruma prawn (*Penaeus japonicus*) are currently listed in Article 9.3.2. 'under study'.

Giant tiger prawn (*Penaeus monodon*) which is currently listed in Article 9.3.2. 'under study' was assessed as having incomplete evidence of susceptibility and was therefore proposed to be removed from Article 9.3.2. and included in Section 2.2.2. of Chapter 2.2.X., Infection with DIV1 of the *Aquatic Manual*.

Pathogen-specific positive PCR results have been reported in the following five species, channeled applesnail (*Pomacea canaliculata*), *Helice tientsinensis*, Japanese shore crab (*Hemigrapsus penicillatus*), *Macrobrachium superbum* and *Plexippus paykulli*, but an active infection has not been demonstrated. Therefore, these species were proposed to be included in the second paragraph of Section 2.2.2. of Chapter 2.2.X., Infection with DIV1 of the *Aquatic Manual*.

5. Naming convention for susceptible species

The scientific names of the host species are in accordance with the World Register of Marine Species (WoRMS) https://www.marinespecies.org/index.php.

The common names of host species are in accordance with FAOTERM (http://www.fao.org/faoterm/collection/faoterm/en/). Where a common name was not found in FAOTERM, the naming was done in accordance with https://www.sealifebase.ca.

6. Comments on the *ad hoc* Group's rationale and decision-making

'Inconclusive' was used to distinguish situations where more information was provided than would have been assessed as 'Not-determined' but the *ad hoc* Group could not conclude that the criterion was met. Each time inconclusive was used within the assessment table, the *ad hoc* Group provided additional information in a footnote. The *ad hoc* Group treated 'Inconclusive' as 'Not-determined' when making their final assessment.

The *ad hoc* Group agreed that while the ideal situation was two papers with a score of '1', a single robust study scoring '1' was also enough to conclude susceptibility of a species in the absence of conflicting evidence. Additional studies were still reviewed to check for any supporting or conflicting evidence. When additional papers were identified but the *ad hoc* Group did not feel that they were necessary to assess comprehensively because the species had already been determined as susceptible by other studies, these references were only noted in the list of references (Section 7).

7. Article 1.5.9 Listing of Susceptible species at a taxonomic ranking of Genus or higher

The *ad hoc* Group considered Article 1.5.9., Listing of susceptible species at a taxonomic ranking of Genus or higher, and determined that it was not applicable for the susceptible species for DIV1 identified at this time.

8. References

CHEN, X., QIU, L., WANG, H., ZOU, P., DONG, X., LI, F. & HUANG, J. (2019). Susceptibility of *Exopalaemon carinicauda* to the infection with Shrimp hemocyte iridescent virus (SHIV 20141215), a strain of decapod iridescent virus 1 (DIV1). *Viruses*, **11**, 387.

GUIXIANG, T., WEILI, Y., XIANGQING, W., YONG, L., GUANGUA, H., XIULI, C., XIAOYU, C., LUANYU, H., TAO, S., XINXIAN, W. & XIAOZHENG, L. (2022). Rapid detection of Decapod iridescent virus 1 (DIV1) by recombinase polymerase amplification. *Journal of Virological Methods*, **300**, 114362.

HE, Z., CHEN, X., ZHAO, J., HOU, D., FU, Z., ZHONG, Y., HU, X., ZHANG, S. & SUN, C. (2021a). Establishment of infection mode and *Penaeus monodon* hemocytes transcriptomics analysis under decapod iridescent virus 1 (DIV1) challenge. *Aquaculture*, **542**, 736816.

HE, Z., ZHAO, J., CHEN, X., LIAO, M., XUE, Y., ZHOU, J., CHEN, H., CHEN, G., ZHANG, S. & SUN, C. (2021b). The molecular mechanism of hemocyte immune response in *Marsupenaeus japonicus* infected with decapod iridescent virus 1. *Frontiers in Microbiology*, **12**, 710845.

LIAO, X-Z., WANG, C-G., WANG, B., QIN, H-P., HU, S-K., ZHAO, J-C., HE, Z-H., ZHONG, Y-Q., SUN, C-B. & ZHANG, S. (2020). Research into the hemocyte immune response of *Fenneropenaeus merguiensis* under Decapod iridescent virus 1 (DIV1) challenge using transcriptome analysis. *Fish and Shellfish Immunology*, **104**, 8-17.

QIU, L., GUO, X-M., FENG, Y-H., XING, J-Y., REN, X-Y. & HUANG, J. (2023). Susceptibility of kuruma shimp to the infection with Decapod iridescent virus 1. *Frontier in Marine Science*, **10**, 1114123.

QIU, L., CHEN, X., GAO, W., GUO, X-M., XIE, G-S., GONG, M., YANG, B., LI, C., ZHANG, Q-L. & HUANG, J. (2022). Confirmation of susceptibility of swimming crab to infection with Decapod iridescent virus 1. *Aquaculture*, **548**, Part 1.

QIU, L., CHEN, X., GAO, W., LI, C., GUO, X-M., ZHANG, Q-L., YANG, B. & HUANG, J. (2021). Molecular epidemiology and histopathological study of a natural infection with decapod iridescent virus 1 in farmed white leg shrimp, *Penaeus vannamei*. *Aquaculture*, **533**, 736105.

QIU, L., CHEN, X., ZHAO, R-H., LI, C., GAO, W., ZHANG, Q-L. & HUANG, J. (2019). Description of a natural infection with Decapod iridescent virus 1 in farmed giant freshwater prawn, *Macrobrachium rosenbergii*. *Viruses*, **11(4)**, 354.

QIU, L., CHEN, M-M., WAN, X-Y., ZHANG, Q-L., LI, C., DONG, X., YANG, B. & HUANG, J. (2018a). Detection and quantification of Shrimp hemocyte iridescent virus by TaqMan probe based real-time PCR. *Journal of Invertebrate Pathology*, **154**, 95-101.

QIU, L., CHEN, M-M., WAN, X-Y., LI, C., ZHANG, Q-L., WANG, R-Y., CHENG, D-Y., DONG, X., YANG, B., WANG, X-H., XIANG, J-H. & HUANG, J. (2017). Characterization of a new member of Iridoviridae, Shrimp hemocyte iridescent virus (SHIV), found in white leg shrimp (*Litopenaeus vannamei*). *Scientific Reports*, **7**, 11834.

SANGUANRUT, P., THAIUE, D., THAWONSUWAN, J., DIVA, J.A-C., FLEGEL, T.W. & SRITUNYALUCKSANA, K. (2022). The lymphoid organ (LO) is an additional, prime target for decapod iridescent virus 1 (DIV1) in *Penaeus vannamei. Aquaculture*, **547**, 737482.

SRISALA, J., SANGUANRUT, P., THAIUE, D., LAIPHROM, S., SIRIWATTANO, J., KHUDET, J., POWTONGSOOK, S., FLEGEL, T.W. & SRITUNYALUCKSANA, K. (2021). Infectious myonecrosis virus (IMNV) and Decapod iridescent virus 1 (DIV1) detected in captured, wild *Penaeus monodon. Aquaculture*, **545**, 15.

SRISALA, J., SANGUANRUT, P., THAIUE, D., LAIPHROM, S., SIRIWATTANO, J., KHUDET, J., POWTONGSOOK, S., FLEGEL, T.W. & SRITUNYALUCKSANA, K. (2020). Urgent warning: Positive PCR detection results for infectious myonecrosis virus (IMNV) and decapod iridescent virus 1 (DIV1) in captured *Penaeus monodon* from the Indian Ocean. *Network of Aquaculture Centres in Asia-Pacific*.

XU, L., WANG, T., LI, F. & YANG, F. (2016). Isolation and preliminary characterization of a new pathogenic iridovirus from redclaw crayfish *Cherax quadricarinatus*. *Diseases of Aquatic Organisms*, **120**, 17-26.

YANG, H., WEI, X., WANG, R., ZENG, L., YANG, Y., HUANG, G., SHAFIQUE, L., MA, H., IV, M., RUAN, Z., NAZ, H., LIN, Y., HUANG, L. & CHEN, T. (2020). Transcriptomics of *Cherax quadricarinatus* hepatopancreas during infection with Decapod iridescent virus 1 (DIV1). *Fish and Shellfish Immunology*, **98**, 832-842.

Other references reviewed by the *ad hoc* Group but not referred to in the report above:

ARULMOORTHY, M.P., VIJAYAN, R., SINDUJA, K., SURESH, E. & VASUDEVAN, S. (2022). Infection with Decapod iridescent virus 1: an emerging disease in shrimp culture. *Archives of Microbiology*, **204**, 685.

CHEN, Z., HUANG, J., ZHANG, F., ZHOU, Y. & HUANG, H. (2020). Detection of shrimp hemocyte iridescent virus by recombinase polymerase amplification assay. *Molecular and Cellular Probes*, **49**, 101475.

GONG, H-Y., LI, Q-Y., ZHANG, H., YE, L., SHI, L. & FENG, Y-H. (2021). Development and comparison of qPCR and qLAMP for rapid detection of the decapod iridescent virus 1 (DIV1). *Journal of Invertebrate Pathology*, **182**, 107567.

HUANG, Q-J., CHEN, Y., LIU, H., ST-HILAIRE, S., GAO, S., MACKINNON, B., ZHU, S-Q., WEN, Z-Q., JIA, P. & ZHENG, X-C. (2022). Establishment of a real-time recombinase polymerase amplification (RPA) for the detection of decapod iridescent virus 1 (DIV1). *Journal of Virology Methods*, **300**, 114377.

LI, F., XU, L. & YANG, F. (2017). Genomic characterization of a novel iridovirus from redclaw crayfish *Cherax quadricarinatus*: evidence for a new genus within the family Iridoviridae. *Journal of General Virology*, **98**, 2589-2595.

LIAO, X., HE, J. & LI, C. (2022). Decapod iridescent virus 1: An emerging viral pathogen in aquaculture. *Reviews in Aquaculture*, **14:4**, 1779-1789.

QIU, L., CHEN, X., GUO, X-M., GAO, W., ZHAO, R-H., ZHANG, Q-L., YANG, B. & HUANG, J. (2020). A TaqMan probe based real-time PCR for the detection of Decapod iridescent virus 1. *Journal of Invertebrate Pathology*, **173**, 107367.

QIU, L., CHEN, M-M., WANG, R-Y., WAN, X-Y., LI, C., ZHANG, Q-L., DONG, X., YANG, B., XIANG, J-H. & HUANG, J. (2018b). Complete genome sequence of shrimp hemocyte iridescent virus (SHIV) isolated from white leg shrimp, *Litopenaeus vannamei. Archives of Virology*, **163**, 781-785.

SANGUANRUT, P., THAIUE, D., THAWONSUWAN, J., FLEGEL, T.W. & SRITUNYALUCKSANA, K. (2020). Urgent announcement on usefulness of the lymphoid organ (LO) as an additional prime target for diagnosis of decapod iridescent virus 1 (DIV1) in diseased *P. vannamei*. *Network of Aquaculture Centres in Asia-Pacific*.

.../Annexes

Annex 1. List of Participants

MEETING OF THE WOAH AD HOC GROUP ON SUSCEPTIBILITY OF CRUSTACEAN SPECIES TO WOAH LISTED DISEASES

14, 21 and 23 March 2023 (virtual)

List of Participants

MEMBERS OF THE AD HOC GROUP

Dr Mark Crane (Chair) CSIRO Honorary Fellow Australian Centre for Disease Preparedness (ACDP) CSIRO Geelong, AUSTRALIA	Dr Kelly Bateman Crustacean Health Theme Lead Centre for Environment, Fisheries and Aquaculture Science (CEFAS) Dorchester, UNITED KINGDOM	Dr Jorge Cuéllar-Anjel International Consultancy on Aquatic Animal Health Bogotá, COLOMBIA
Dr Arun Dhar Professor and Director of Aquaculture Pathology Laboratory	Dr Chien Tu Aquatic Medicine Laboratory Animal Health Research Institute (AHRI), Council of	

Aquaculture Pathology Laboratory School of Animal & Comparative Biomedical Sciences University of Arizona Tucson, UNITED STATES

WOAH HEADQUARTERS

Scientific Coordinator for Aquatic Animal Health

Standards Department

Dr Bernita Giffin

Dr Kathleen Frisch Scientific Coordinator for Aquatic Animal Health Standards Department

Agriculture

New Taipei City, CHINESE TAIPEI

Report of the WOAH ad hoc Group on susceptibility of crustacean species to WOAH listed diseases / March 2023

Annex 2. Terms of Reference

MEETING OF THE WOAH AD HOC GROUP ON SUSCEPTIBILITY OF CRUSTACEAN SPECIES TO WOAH LISTED DISEASES

14, 21 and 23 March 2023 (virtual)

Terms of reference

Background

Chapter 1.5. Criteria for listing species as susceptible to infection with a specific pathogenic agent of the *Aquatic Code*, provides criteria for determining which host species are listed as susceptible in Article X.X.2. of each disease-specific chapter in the *Aquatic Code*.

Assessments for all of the WOAH listed diseases are being undertaken progressively by *ad hoc* Groups. Once completed, the revised list of susceptible species in the relevant Article X.X.2. of the *Aquatic Code* is circulated for Member comment and then presented for adoption.

Species, where there is some evidence of susceptibility but insufficient evidence to demonstrate susceptibility are included in the relevant disease-specific chapter in the *Aquatic Manual*.

The *ad hoc* Group on Susceptibility of crustacean species to infection with WOAH listed diseases completed assessments for most WOAH-listed diseases in 2015-2016, but has not met since.

Purpose

The *ad hoc* Group on Susceptibility of crustacean species to infection with WOAH listed diseases will undertake assessments for infection with decapod iridescent virus 1 (DIV1), a new WOAH listed disease, adopted in 2021.

Terms of Reference

- 1) Review relevant literature documenting susceptibility of species for infection with DIV1 and apply the criteria, as outlined in Chapter 1.5. Criteria for listing species as susceptible to infection with a specific pathogen, to potential host species.
- 2) Determine susceptible species for infection with DIV1 based on Article 1.5.7.
- 3) Determine species with incomplete evidence for susceptibility for infection with DIV1 based on Article 1.5.8.

Expected outputs of the ad hoc Group

- 1) Propose a list of susceptible species for inclusion in the Article 9.3.2. of Chapter 9.3., Infection with DIV1, of the *Aquatic Code*.
- 2) Propose a list of species with incomplete evidence for susceptibility for inclusion in Section 2.2.2 of Chapter 2.2.X. Infection with DIV1 of the *Aquatic Manual*.
- 3) A report for consideration by the Aquatic Animals Commission at its September 2023 meeting.