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Summary 

Machine learning (ML) is an approach to artificial intelligence 
characterised by the use of algorithms that improve their performance 
at a certain task (e.g. classification or prediction) from data itself and 
without being explicitly and fully instructed on how to achieve it. 
Surveillance systems for animal and zoonotic diseases depend upon 
effective completion of a broad range of tasks, some of them amenable 
to ML algorithms. As in other fields, the use of ML in animal and 
veterinary public health surveillance has greatly expanded in recent 
years. ML algorithms are being used to accomplish tasks that became 
attainable only with the advent of large datasets, new methods for their 
analysis and increased computing capacity. Examples include the 
identification of an underlying structure in large volumes of data from 
an ongoing stream of abattoir condemnation records, the use of deep 
learning to identify lesions in digital images obtained during 
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slaughtering or the mining of free text in electronic health records from 
veterinary practices for purpose of sentinel surveillance. However, ML 
is also being applied to tasks that had usually been tackled with 
traditional statistical data analysis. Statistical models have extensively 
been used to infer relationships between predictors and disease to 
inform risk-based surveillance and increasingly, ML algorithms are 
being used for prediction and forecasting of animal diseases in support 
of more targeted and efficient surveillance. While ML and inferential 
statistics can accomplish similar tasks, they have different strengths 
making one or the other more or less appropriate in a given context. 
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What is machine learning? 

The advancement in computing technology and power and the 
explosion of data generation and storage capability in the last decades 
have seen the increased use of machine learning (ML) in many areas. 
ML is a collection of methods built upon statistics, mathematics and 
computer science that enable automated pattern discovery and model 
building at scale. Many introductory articles describing the various ML 
techniques have been produced targeting researchers and scientists in 
different fields [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. We do not intend to 
reproduce those efforts but aim to put the ML methods in context of 
their techniques and purposes in comparison to traditional statistical 
data analysis and to present ML solutions to specific surveillance tasks 
that cannot effectively be addressed by traditional statistical data 
analysis. In this section we will contrast unsupervised ML with the use 
of descriptive statistics, and supervised ML with the use of statistical 
modelling (inferential statistics) to highlight the similarity in the 
approaches they use and the differences in purposes. 

Descriptive statistics are numerical and graphical summaries that 
describe the basic characteristics of the data. For example, Pearson’s 
correlations and multi-way contingency tables describe association 
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between continuous variables and between categorical variables while, 
similarity measures such as Euclidean distance or Manhattan distance 
summarise likeness between observations. Although it is possible to 
comprehend these descriptive statistics in smaller settings, the 
information can quickly become difficult to synthesise with increased 
number of variables and observations. Unsupervised ML techniques 
basically explore and process further these descriptive statistics to 
discover hidden patterns and groupings in the data and to extract useful 
features from the data. The main tasks unsupervised ML are used for 
are dimension reduction, clustering and association rule mining. 
Dimension reduction techniques such as principal components analysis 
are frequently used to reveal hidden patterns in high-dimensional inter-
related data [12]. They are used, for example, to summarise a large 
number of correlated bioclimatic variables or to assist visualising 
population structure in genetic variation [13, 14]. Specifically, matrix 
decomposition techniques are applied to Pearson’s correlation matrix 
or to the raw data matrix to transform those correlated variables into a 
new set of uncorrelated components. The output eigenvalues and 
eigenvectors from the matrix decomposition and the calculated 
components from the analysis can then be presented in tables or figures 
to visualise any hidden patterns in the data. Likewise, clustering 
techniques utilise similarity measures from descriptive statistics to 
group individuals that share similar characteristics [15, 16]. 
Unsupervised ML can also identify interesting relations between 
variables and networks in large databases by exploring those frequent 
if-then conditional patterns in the data [17, 18]. Big data visualisation 
is another area of unsupervised ML that has expanded those traditional 
graphical techniques with enhanced computer systems to collect and 
process raw data, and to present the information graphically in a way 
that we can gain insights, for example, using a dendrogram heatmap to 
depict gene expression data or using cartography to visualise geospatial 
spread of infectious diseases [19, 20]. Figure 1 presents examples of 
data visualisation generated by unsupervised ML algorithms for 
association rules mining, clustering and dimension reduction. 

Inferential statistics allow us to make inferences about the population 
using sample data. Statistical models make assumptions (not necessary 
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causal) about the data generation process and these distributional 
assumptions are incorporated in the parameter estimation process. 
Linear regression or logistic regression are two classical examples of 
statistical models that infer the relationships between predictors and the 
outcome based on estimated regression coefficients and their 95% 
confidence intervals. If we wish to use statistical models for prediction, 
95% prediction intervals are commonly used to account for both 
uncertainty in estimated parameters and random variation in future 
observations. In contrast, the primary purpose of supervised ML 
techniques is making classification, diagnostics, prediction or 
forecasting on unknown data, and the models’ performance are judged 
by their estimation errors. Most of the methods used in classical 
statistical modelling (i.e. methods that make specific assumptions about 
joint or conditional probability distributions of the data) can also be 
utilised in supervised ML, as many supervised ML methods use data 
directly to find generalisable predictive patterns. Supervised ML 
methods also exploit regularisation algorithms to reduce overfitting 
(models that fitted too closely to the data compromising its 
classification or prediction ability in unseen data) and choose 
optimisation algorithms to improve prediction accuracy; these 
mathematical processes are seldom carried out in classical statistical 
modelling. 

Inference and prediction are complementary. The strength of statistical 
models is on inference, and they incorporate our knowledge of the data 
generation process. On the other hand, supervised ML emphasises 
choosing the best predictive algorithms, and the models will have 
various degrees of interpretability and explainability. In the next 
sections we will look at the scope of utilising ML in animal and 
veterinary public health surveillance and their specific applications. 

Machine learning in animal and veterinary public 
health 

The scope of artificial intelligence (AI) in the context of public health 
has recently been reviewed by Schwalbe and Wahl [23], who identified 
four categories of AI-driven health interventions: 
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1) diagnosis 

2) mortality and morbidity risk assessment 

3) disease outbreak prediction and surveillance 

4) health policy and planning. 

It is possible to identify recent contributions of ML to animal and 
veterinary public health that broadly fall within these categories, as well 
as others that would not clearly fit within any of them. 

As in healthcare medical applications, signal processing methods in 
combination with ML can be used to enhance the performance of 
diagnostic or classification systems in animals or herds. Promising 
results have been obtained for example when convolutional neural 
networks were used to recognise and quantify specific lesions on digital 
images captured during routine slaughtering of pigs [24]. 
Improvements to diagnostic performance by applying ML are not 
limited to imaging data, classification tree analysis has been shown to 
be able to enhance the sensitivity of the classification regime on which 
the eradication programme for bovine tuberculosis in the United 
Kingdom (UK) is based [25]. Decision trees are a method of supervised 
learning that can be used for regression or classification tasks. They 
consist of a tree-like structure where each node represents a single input 
feature and, for numeric features, their split value. The final nodes after 
which no further splits take place are referred to as the leaves of the tree 
and represent the output that is used to classify or predict. Identification 
of the best feature and threshold value to split the data is carried out in 
order to generate the most homogeneous sub-nodes with respect to the 
outcome of the tree. Decision trees are one of the most widely used ML 
methods and the key component of other algorithms such as random 
forests. 

With regard to the second domain of application, ML has been used, for 
example, to attempt to predict cases of lameness in dairy cows based on 
milk production and conformation traits [26]. The predictive 
performance of the classifiers built in this study was suboptimal, but as 
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acknowledged by the authors, it could possibly be improved by 
expanding the spectrum of data with which the models were trained. 
Indeed, this study illustrates how the capacity of ML algorithms to 
accurately predict presentation of a multifactorial condition, such as 
lameness in dairy cattle, relies on them being trained on data that 
captures the wide array of disease determinants. The ability of ML 
algorithms to generate real-time risk predictions based on a broad range 
of risk factors was the motivation for the use of ML to expand 
conventional risk prediction approaches and generate daily predictions 
for highly pathogenic avian influenza risk for poultry farms in the 
Republic of Korea [27], an application that falls within the third 
category of AI-driven interventions listed above. 

As for applications for health policy and planning, we are not aware of 
the use of ML algorithms to support allocation of resources for animal 
disease surveillance in the same way they have been used in public 
health resource allocation [28]. On the other hand, ML has been used to 
generate information in order to support animal health surveillance 
planning and outbreak response. In a recent example, to address the lack 
of comprehensive and accurate poultry population data in the United 
States of America (USA), Patyk et al. developed an automated machine 
learning process to locate commercial poultry operations and predict 
their size and type in the USA. The authors used a supervised ML 
algorithm to detect poultry operations from aerial imagery [29]. 

In recent years, there has been a rapid expansion in the application of 
ML to very diverse challenges in animal health, some of which do not 
entirely fall within the above areas of application, which mostly refer to 
the use of supervised algorithms for purpose of prediction or 
classification. Unsupervised ML methods have been used, for example, 
to discover underlying structure in poultry condemnation data to 
uncover potential indicators for broiler chicken health and welfare 
surveillance (cluster detection and association rule mining) [21, 30] and 
to classify cattle herd types to inform control and surveillance of 
endemic diseases (dimension reduction) [31]. Supervised ML methods 
for regression/classification have also been applied to animal and 
veterinary public health challenges beyond the four domains identified 
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by Schwalbe and Wahl [23], a recent example being the identification 
of carnivore and bat species not recognised as reservoirs of rabies with 
trait profiles suggesting their capacity to be or become reservoirs [32]. 

An important emerging area of application of ML algorithms in the 
context of animal health surveillance is the analysis and extraction of 
information from clinical records for the purpose of syndromic 
surveillance [33]. Recent studies have shown the potential of applying 
machine learning algorithms to automate mining of free-text data in 
clinical and post-mortem reports; an application that can greatly 
facilitate the adoption of animal health syndromic surveillance [34, 35, 
36]. At farm level, precision technologies are providing farmers and 
veterinarians with large amounts of data the analysis of which can 
greatly support health and production management. Machine learning 
algorithms are central to the analysis of such data and, as for text data, 
they can enable their used for the purpose of syndromic surveillance 
[37, 38]. 

In summary, due to their diversity and versatility, ML algorithms are 
being applied to an increasing range of tasks in animal and veterinary 
public health. In addition to broad domains of application analogous to 
those recognised in the field of global health, more specific uses of ML 
to address particular tasks continue to emerge. In the following section, 
we present examples of the application of selected machine learning 
algorithms to carry out specific tasks of relevance in the context of 
veterinary public health surveillance. Although some of the examples 
fall within the four categories listed above, they are not intended to 
mirror them. 

Examples of application in animal and veterinary 
public health surveillance 

Use of machine learning to maximise probability of 
pathogen detection 

As described above, ML can be applied for different purposes within 
the context of animal and veterinary public health. In the area of 
surveillance it can be used to determine the likelihood of pathogen 
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detection. This allows researchers to prioritise samples or cases that 
have the highest probability of being positive, ensuring resources and 
laboratory capacities are focused on these samples and to assist in the 
design of any future programmes of surveillance. Such approaches have 
been applied to animal disease, but also food borne disease [39] and 
plant diseases [40] and make the most of the metadata associated with 
the biological samples or cases, such as geographical location, type/age 
of host, etc. 

As an example, Walsh et al. [41] used gradient boosted trees, which is 
an extension of a classification tree (Table I) to determine the likelihood 
that avian influenza virus (AIV) will be isolated from an individual wild 
bird sample. Many categorical features were included in the algorithm, 
including sex, age, type of bird, latitude, longitude and polymerase 
chain reaction (PCR) cycle threshold-values (Ct‐values). The dataset 
came from active surveillance of wild birds in the USA, with particular 
focus on the migratory flyways. The samples tested were cloacal and 
oropharyngeal swabs and in total 24,243 were available for analysis, 
90% of which were used within the training dataset. An important aim 
of the study by Walsh et al. was to assess the predictability of the PCR 
Ct-values as a cut-off of 35 is traditionally used, as per designed for 
commercial poultry, and its validity was uncertain for wild bird 
samples. Results showed that the PCR Ct-value was indeed the most 
important feature in order to predict AIV isolation from a sample, 
followed by location (latitude and longitude) and, as the others were not 
influential, only these three features were used in the final model. 
Importantly, the results showed that AIV could be isolated from 16% 
of the samples that would have been classified negative via the 
traditional method. The findings of this study are of direct relevance to 
the AIV wild bird surveillance programme, which can be enhanced with 
this knowledge. 

Use of machine learning for early detection of emerging 
animal and foodborne diseases 

ML algorithms are central to platforms that have been developed in 
recent years for the purpose of early detection of emerging animal 
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diseases such as the platform for automated extraction of animal disease 
information from the web, commonly known as PADI-web, 
biosurveillance system [42]. This platform collects daily news articles 
in 16 different languages from the web and uses machine learning 
algorithms to classify news as relevant or not and sentences within the 
news based on the type of event and type of information. 

Methods for automatic identification of topics in text objects such as 
electronic clinical records have also proved to be applicable for tracking 
of cases in the event of an outbreak. Following anecdotal evidence of 
an increase in the number of dogs seen in UK veterinary practices with 
an acute vomiting syndrome, application of latent Dirichlet allocation 
to the clinical free text component of electronic health records from 
veterinary practices part of a sentinel surveillance system, facilitated 
identification of the potential cause of the outbreak [43]. 

ML algorithms have been used in a study aiming to explore the potential 
of combining genomic and epidemiological metadata for purpose of 
foodborne disease surveillance. Although the study was based on 
simulated data, it demonstrated that, given sufficient data, ML can be 
used to develop predictive models of human infection that could 
enhance the predictive power of current early detection algorithms or 
help tracing the source of a foodborne outbreak [44]. The ML approach 
used in this study – boosted decision trees – makes use of two types of 
algorithms: decision trees and boosting, an ensemble method that fits 
sequentially a series of ‘weak’ learners such as decision trees producing 
a final strong learner as a weighted combination of the individual ones. 

Use of machine learning for forecasting disease 
occurrence 

One area where ML has been used in the field of animal health 
surveillance is in the development of models that make predictions 
about which farms are more likely to become infected with specific 
pathogens, based on previous case data and a set of potential risk 
factors. For example, ML models have been applied to porcine 
epidemic diarrhoea virus (PEDV) to predict future PEDV trends in 
Ontario, Canada [45]. In this study, three different ML approaches 
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(random forest, neural networks and classification trees) were used to 
identify climatic factors that were predictive of the size of the outbreak 
(small, medium, large) by training the ML algorithms on observed data 
from 161 farms over 171 weekly time points. The best performing 
approach, random forest, had a 68% accuracy based on the testing set 
of data. Another study on PEDV focused instead on applying ML 
algorithms (random forest, support vector machines, and gradient 
boosting machines) to weekly farm incidence data from 332 sow farms 
to train predictive models and to identify the key factors that are 
associated with PEDV occurrence on individual farms [46]. They 
identified the relative importance of a number of factors in determining 
the risk of infection, including animal movements into nearby farms, 
local hog density, environmental factors, and landscape structure. The 
best performing model showed a greater than 80% accuracy in 
predicting whether a farm would become infected within a one-week 
period, based on the testing data. 

A further example is the application of ML methods to identify 
predictive factors for farms becoming positive for bovine tuberculosis 
(bTB) in different risk areas in Great Britain [47, 48]. This work used a 
very extensive data set of potential herd-level predictors including 
demographic herd characteristics and bTB-related variables, cattle 
movements, badger density, land class data and a range of climatic 
variables; these were used along with the outcome variable, which was 
whether a herd was a bTB incident in 2016 (out of approximately 
38,000 herds). The initial data set had 141 predictors, so several steps 
were carried out to reduce the number of predictors to improve the 
speed and performance of the algorithms (classification and regression 
trees, multinomial logistic regression, random forest and regularised 
logistic regression). The best performing models had an overall 
accuracy of approximately 80% at predicting which farms would 
become bTB positive. The main output from the models was the set of 
key risk factors that are predictive of a farm becoming bTB positive, as 
these then enable the targeting of controls. There were differences in 
which risk factors were in the list of the ten most important variables 
between the ML approaches, but also which factors were common to 
multiple methods. Analysis of these most important factors help to 
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identify farm-level variables that could be used to select farms where 
enhanced surveillance or control measures could be targeted with 
important benefits for cost-effective control. 

Other potential applications of machine learning in animal 
health surveillance 

ML methods have been applied successfully to questions related to the 
susceptibility of hosts to disease. For example Becker et al. use ML to 
identify which bat species are potential reservoir hosts of 
betacoronaviruses [49]. They used host-virus data from 710 host 
species and 359 virus genera from GenBank integrated with a mammal 
phylogenetic super tree and ecological traits of bat species. An 
ensemble of eight models was applied to the same data set, which were 
either network based (4), trait-based (3) or a hybrid approach (1). The 
analysis showed that the ecological trait models predicted well the 
novel hosts and can now be used to inform surveillance and, in 
particular, to optimise wildlife sampling for undiscovered viruses. 
Another example of application of ML to generate insights into 
potential reservoirs of disease is the study by Wardeh et al. [50]. 
Predictions of associations between known viruses and potential 
reservoirs of disease (zoonotic and non-zoonotic), were obtained with 
an ensemble of six models using a large data set of mammal-pathogen 
interactions. The results highlighted that current knowledge is likely to 
heavily underestimate the number of existing associations, particularly 
in wild and semi-domesticated mammals. 

An application of ML in the context of disease surveillance that 
deserves special mention is the exploration of genome sequencing data. 
The characteristics of these data (large, complex and hiding patterns 
that would be challenging to determine via other means) make ML 
methodologies ideal for their analysis. Furthermore, sequencing data is 
now becoming more readily available due to reduction in cost and the 
increase in through-put within veterinary and public health institutes. 
Examples of tasks relevant for design and implementation of infectious 
disease surveillance, which have been successfully accomplished by 
applying ML to whole genome sequencing data include source 
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attribution [51], assessment of pathogenicity [52], prediction of 
antibiotic resistance phenotypes [53] and prediction of clinical 
outcomes [54]. 

The above examples mostly deal with aspects of pathogen/disease 
detection, their patterns of distribution in the population and forecasting 
their future occurrence. Undoubtedly, a better understanding of 
pathogen/disease occurrence can inform and enhance surveillance 
systems for infectious diseases. However, another key element in the 
design and implementation of surveillance systems for animal diseases 
is knowledge about the structure of the animal population. To that end, 
it has been shown that national level databases could potentially be 
harvested to provide insights into livestock distribution and holding 
type which are critical for surveillance when up-to-date census data are 
not available. For example, a database containing environmental, 
climatic and demographic variables was utilised to develop ‘species 
distribution models’ focusing on estimating farm animal population 
numbers [55]. In this study, the authors built three ML models using a 
commercial livestock database and 22 environmental and socio-
economic predictors. Boosted regression trees and random forest had 
comparable performance (86–92% for livestock unit prediction and 47–
60% for cattle prediction) while the K-nearest neighbour model 
performed poorly in all simulations. While it is valuable to develop 
supervised ML models that predict livestock distributions using 
environmental and socio-economic predictors, it is not always possible 
to develop such prediction algorithms when the ‘ground truth’ is not 
available. K-mean cluster analysis, an unsupervised ML technique, has 
been used to classify holdings into different groups based on a set of 
proxy indicators [56]. External validation of the clustering results 
(matched to other data sources on pig population data where the true 
holding type was known) indicated it had good agreement (79%) and 
was comparable to the agreement of clustering based on a manual 
model of 78% (using expert opinion to develop rules that classify 
holdings based on movement characteristics). The authors concluded 
that although the manual model provided accurate results, it was time 
consuming, and the developed unsupervised ML model example can 
provide useful degree of accuracy for surveillance and risk assessment. 
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In Table I, we provide a brief description of methods commonly used 
in the field of animal and veterinary public health that have been 
referred to in this section. The table also provides introductory papers 
for further detailed reading on each method. To guide those readers 
interested in exploring further the use of ML algorithms to accomplish 
specific tasks, Table II provides examples and references of application 
of specific ML methods. 

Practical recommendations 

Consider training a meta-model 

Each ML method will have different strengths and weaknesses, and it 
is difficult to know a priori which approach will work best for any given 
problem. Users can also apply a stacking ensemble approach, where 
multiple methods are applied in parallel and the final model is a 
weighted combination of the predictions from all the models. 

Consider the transparency of the approach 

A disadvantage of ML algorithms when compared to statistical methods 
such as regression is the limited ‘interpretable’ information they 
provide beyond their immediate task (e.g. classifying observations). For 
example, neural networks have been found to be very effective at 
making predictions where there are complex non-linear relationships 
between variables, but they might be unsuitable for identifying 
individual risk factors from which to target farms for surveillance or 
control measures. 

Consider whether the main objective is to explain or to 
predict 

As the main focus of ML algorithms is on prediction rather than 
explanation, there can be differences in the variables that are included 
in the final predictive model between ML and classical statistics. While 
explanation is not the primary aim of ML methods, some of the factors 
that are found to be important for prediction by ML algorithms could 
be the target of further investigation and could shed light of causative 
explanations, even where they were not found to be statistically 
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significant by classical statistics approaches. If the intention is to build 
a ML model in order to predict disease occurrence, the algorithm should 
ideally be trained on data that capture the array of disease determinants. 
This is particularly important when trying to predict the occurrence of 
multifactorial conditions. 

Consider the balance of domain expertise and machine 
learning expertise 

For example, Sperschneider [40] suggests that 5% of the time will be 
spent training the model but 95% selecting the most appropriate 
features, which needs biological/epidemiological expertise. Likewise, 
ML expertise is needed to ensure that the correct model is applied for 
the available data, and that overfitting is avoided. 

Conclusions 

Surveillance in animal and veterinary public health involves diverse 
interconnected tasks in pursue of the broad objectives of enabling early 
detection of animal and zoonotic disease threats, providing assurance 
of freedom from hazards in animals and their products and evaluating 
controls for endemic diseases. The rapid expansion of ML in recent 
years has seen their application to many different tasks in relation to 
animal and veterinary public health surveillance. In some cases, ML 
algorithms are used to achieve tasks that only became relevant and 
within reach with the advent of big data, the development of new 
methods for data analysis and increased computing power. But ML 
methods are also being used to address technical needs of surveillance 
systems that have usually being answered by traditional statistical data 
analysis, such as the identification of samples, animals or herds to be 
targeted based on a priori risk. Both groups of applications are 
expanding rapidly, and while many are still limited to case studies 
illustrating their potential, it can be expected that in the coming years 
they become increasingly embedded into national and international 
surveillance systems. Despite their potential to enhance surveillance 
efforts in animal and veterinary public health, ML algorithms are not a 
replacement for traditional statistical analysis. Their successful 
integration as part of surveillance systems should take into 
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consideration the value of combining multiple methods for the same or 
similar tasks and the relative importance of transparency vs. (sometimes 
moderate) increases in predictive performance. For this, an adequate 
balance between domain expertise and ML expertise is essential. 

__________ 
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Table I 

Selected machine learning methods applied to address tasks in the 
context of animal and veterinary public health surveillance: 
description of the method and suggested reference for further 
details 

Machine learning method Description Reference 

Classification and regression 

tree 

A decision tree approach that explains how a target variable’s 

values can be predicted based on other values, where the target 

variable may be categorical (classification tree) or a quantitative 

(regression tree) 

[57] 

Random forest An ensemble of decision trees is generated from different 

bootstrap samples before individual bootstrap predictions are 

combined into a consensus estimate (bagging approach) 

[58] 

Gradient boosting machine A decision tree approach that can be used for classification and 

regression problems. The algorithm iteratively improves the 

predictive power by refining its performance in areas it is 

performing poorly. It differs from random forest in that it 

sequentially improves each individual tree (boosting) rather than 

building an ensemble of a whole set of trees 

[59] 

Support vector machine Supervised machine learning method for classification, regression 

and outlier detection. It works out how best to create rules that 

separate items into different classes. It does this by finding the 

features that maximise the distance between the classes 

[60] 

Regularised regression A regression approach which penalises models with more 

parameters in order to prevent overfitting 
[61] 

Artificial neural networks Networks of interconnected nodes grouped in layers and including 

an input layer, an output layer and one or more hidden layers. The 

nodes (or neurons) receive signals from antecedent nodes and 

may forward signals to subsequent nodes. The existence of 

hidden layers implies that in contrast to other (shallow) machine 

learning algorithms, in artificial neural networks inputs and outputs 

are not directly connected 

[62] 
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Convolutional neural networks Artificial neural networks with layers (convolutional layers) where 

the input is transformed before it is passed to the next layer 

through the application of a filter. Originally developed to process 

pixel data that could otherwise result in a vast number of nodes in 

a conventional artificial neural network. They are mostly applied to 

analyse visual imagery 

[24] 

Recurrent neural networks Artificial neural networks that allow the output of previous steps to 

be fed as input to the current step. While classical (feed-forward) 

artificial neural networks allow signal to travel only from input to 

output, recurrent neural networks include feedback loops allowing 

outputs from some nodes to affect input into the same nodes. This 

feature of recurrent neural networks allows them to display 

temporal behaviour and capture sequential data such as text or 

time series 

[36] 

Latent Dirichlet allocation A probabilistic Bayesian model frequently used for unsupervised 

classification of documents into topics, which are discovered 

based on the co-occurrence of individual terms. Documents are 

allocated to specific topics based on how relevant they are to them 

[63] 

K-means cluster An unsupervised algorithm that groups observations into k clusters 

by minimising the total sum of squared distances between 

observations and cluster centres 

[15] 

K-nearest neighbour A supervised method for classification based on finding the k-

nearest neighbours in a reference training set and assigning the 

class of a new observation based on a ‘majority vote’ among the k 

neighbours 

[60] 

Ward’s agglomerative 

hierarchical clustering 

An unsupervised method aimed at building a hierarchy of clusters. 

The algorithm starts considering each observation as a cluster and 

proceeds by combining pairs of clusters at each iteration. The 

pairs of clusters to be merged at each step are identified in order 

to minimise total within cluster variance 

[64] 
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Table II 

Selected tasks achieved by applying machine learning methods in 
the context of animal and veterinary public health surveillance 

Task Machine learning 
method applied 

Data requirements Considerations Reference 

Identify underlying 

structure in large 

volumes of abattoir 

inspection data 

Association rule 

mining 

Features (e.g. reasons 

for condemnation in 

abattoir) for which co-

occurrence is of interest 

The number of possible 

association rules can be 

vast, requiring the 

specification of 

constraints for rule 

selection and pruning of 

redundant rules 

[21, 30] 

Identify factors that 

are predictive of 

farms becoming 

infected with a 

particular pathogen 

CART, random 

forest, regularised 

regression, support 

vector machines, 

gradient boosting 

machines 

Infection history data 

from a number of farms 

along with data on the 

potential risk factors 

Transparency as need 

to know each factor and 

its importance so farms 

can be targeted for 

surveillance/control 

[25, 46, 48] 

Prediction of future 

outbreak size 

category (e.g. zero, 

small, medium, 

large) 

Random forest, 

CART, neural 

networks 

Previous incidence data 

for the area of interest 

and data on the 

potential factors; 

influencing outbreak 

size 

Transparency not 

critical for making 

predictions of outbreak 

size, but would be 

beneficial if you also 

want to know which 

farms are more likely to 

become infected 

[45] 

To predict the 

likelihood of a 

pathogen being 

detected from a 

sample 

Gradient boosting 

machine 

Viral RNA from avian 

cloacal and 

oropharyngeal swab 

samples 

Although probability of 

prediction was slightly 

higher if the variables 

age, sex and bird-type 

were included a more 

parsimonious model 

was selected 

[41] 
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To better 

understand the 

structure and 

composition of the 

livestock population 

Self-organising 

feature map, k-

means clustering 

Demographic 

information of the cattle 

herd and transport 

statistics; registered pig 

movement data 

 [31, 56] 

Farm-level 

assessment of 

animal health-status 

Ward’s 

agglomerative 

hierarchical 

clustering 

Individual-animal level 

health and production 

data and biomarkers 

Can be very 

computationally 

intensive 

[64] 

CART: classification and regression trees 
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Figure 1 

Data visualisation examples generated by unsupervised machine 
learning algorithms for association rules mining, clustering and 
dimension reduction 

(A) Networks of associated morbidities in 18 rules generated by 
association rules mining analysis using poultry condemnation data [21] 

(B) Dendrogram showing hierarchical clustering of dairy products 
based on product characteristics favouring or preventing microbial 
growth/survival [22] 

(C) Choropleth map of districts of Northern Egypt displaying values of 
a single principal component explaining 52% of the variation among 18 
bioclimatic variables 
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