# Report of the WOAH *ad hoc* Group on susceptibility of fish species to infection with WOAH listed diseases

April and November/December 2022



# **Table of Contents**

| 1. | Introduction                                                             |                                                                                                                                                                |  |  |
|----|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2. | Meth                                                                     | odology2                                                                                                                                                       |  |  |
|    | 2.1.                                                                     | Stage 1: Criteria to determine whether the route of transmission is consistent with natural pathways for the infection (as described in Article 1.5.4.):       |  |  |
|    | 2.2.                                                                     | Stage 2: Criteria to determine whether the pathogenic agent has been adequately identified (as described in Article 1.5.5.):                                   |  |  |
|    | 2.3.                                                                     | Stage 3: Criteria to determine whether the evidence indicates that presence of the pathogenic agent constitutes an infection (as described in Article 1.5.6.): |  |  |
| 3. | Resu                                                                     | ılts5                                                                                                                                                          |  |  |
| 4. | Asse                                                                     | essments11                                                                                                                                                     |  |  |
| 5. | Nam                                                                      | ing convention for susceptible species28                                                                                                                       |  |  |
| 6. | Gene                                                                     | eral Comments                                                                                                                                                  |  |  |
| 7. | Listing of Susceptible species at a taxonomic ranking of Genus or Higher |                                                                                                                                                                |  |  |
| 8. | References                                                               |                                                                                                                                                                |  |  |

# **List of Annexes**

| Annex I. List of Participants | 40 |
|-------------------------------|----|
| Annex II. Terms of Reference  | 41 |



World Organisation for Animal Health Founded as OIE

Standards Department [ACC.Secretariat@woah.org] 12, rue de Prony 75017 Paris, France T. +33 (0)1 44 15 18 88 F. +33 (0)1 42 67 09 87 woah@woah.org www.woah.org

#### 1. Introduction

This report covers the work of the WOAH *ad hoc* Group on Susceptibility of fish species to infection with WOAH listed diseases (the *ad hoc* Group). This group met electronically in April and November/December 2022.

The list of participants and the Terms of Reference are presented in Annex I and Annex II, respectively.

#### Ad hoc Group's recommendation, rationale and decision-making to the Aquatic Animals Commission:

After reviewing the references it became clear to the *ad hoc* Group that it was not possible to identify the viruses to the level of genogroup (i.e. red seabream iridovirus (RSIV), infectious spleen and kidney necrosis virus (ISKNV) and turbot reddish body iridovirus (TRBIV) genogroups) for many of the susceptible host species. The distinction to genogroup requires nucleic acid sequence and/or phylogenetic tree analyses; and methodologies for this level of taxonomic differentiation are varied (not yet standardized) and only available for recent publications. Members of the *ad hoc* Group were confident in their ability to identify host species that are susceptible to ISKNV at the viral species level (which includes RSIV, ISKNV, TRBIV genogroups) but without additional sequencing evidence could not provide a comprehensive list of susceptible host species to the individual virus genogroups.

The *ad hoc* Group noted that infection with the three genogroups (RSIV, ISKNV and TRBIV) of the ISKNV species presents with the same clinical signs, histopathology and epidemiological information and the only difference between the genogroups is the sequencing information.

The *ad hoc* Group is recommending the title of the proposed chapter be listed as Infection with *Megalocytivirus* instead of Infection with infectious spleen and kidney necrosis virus as there could be confusion between ISKNV species and ISKNV genogroup. The *ad hoc* Group recommends that both Article 10.8.1. of Chapter 10.8. of the WOAH Aquatic Animal Health Code (the Aquatic Code) and Section 1. of Chapter 2.3.7. of the WOAH Manual of Diagnostic Tests for Aquatic Animals (the Aquatic Manual) be updated to reflect the three specific genogroups (RSIV, ISKNV and TRBIV) that would be included within an infection with *Megalocytivirus* chapter.

Assessing fish species susceptible to infection with *Megalocytivirus* at the viral species level allows the inclusion of the early studies using the monoclonal antibody M10 to identify the fish species with RSIV/ISKNV genogroup infections. Many of these fish species are important aquaculture (traded) species. Consequently, failing to recognize them as susceptible to *Megalocytivirus* could have significant disease transmission implications. Furthermore, it is likely that the monoclonal antibody M10 would cross-react with TRBIV but not Scale drop disease virus (SDDV). If this was confirmed (Takano *et al.*, 2020) then M10 could become a key diagnostic tool.

The *ad hoc* Group considered when making this recommendation to the Aquatic Animals Commission that the specific PCR (Kawato *et al.*, 2021a) could be a recommended test in an infection with *Megalocytivirus* chapter of the *Aquatic Manual* since it detects the three genogroups of concern (RSIV, ISKNV and TRBIV). This test would not detect SDDV and would not cross-react with ranaviruses. The *ad hoc* Group noted that while this PCR is validated for both RSIV and ISKNV, it is not validated for TRBIV. This validation would need to be completed if the Aquatic Animals Commission elected to include all three genotypes under a listing of infection with *Megalocytivirus*.

#### 2. Methodology

The *ad hoc* Group applied the *Aquatic Code* criteria, as outlined in Chapter 1.5. Criteria for listing species as susceptible to infection with a specific pathogen, to potential host species in order to determine susceptibility to one or more of the following: infection with RSIV (genogroup), infection with ISKNV (genogroup), infection with TRBIV (genogroup) or infection with *Megalocytivirus* (infectious spleen and kidney necrosis virus species). RSIV, ISKNV and TRBIV are all distinct genogroups of *Megalocytivirus* (excluding SDDV) (https://talk.ictvonline.org/ictv-reports/ictv\_online\_report/dsdna-viruses/w/iridoviridae/615/genus-megalocytivirus).

The assessments were done using a three-stage approach, as outlined in Article 1.5.3. of Chapter 1.5., and further considerations are described below:

# 2.1. Stage 1: Criteria to determine whether the route of transmission is consistent with natural pathways for the infection (as described in Article 1.5.4.):

Table 1 describes the routes of infection accepted by the *ad hoc* Group for the assessments, as well as some considerations when applying Stage 1 criteria to support susceptibility to one of the following: infection with RSIV (genogroup), infection with ISKNV (genogroup), infection with TRBIV (genogroup) or infection with *Megalocytivirus* (excluding SDDV). Consideration was given to whether, if experimental, the procedures mimic natural pathways for disease transmission. Consideration was also given to host stressors, e.g. environmental factors, or co-infections, that may affect host response, virulence and transmission.

#### Table 1: Route of transmission

| Route of transmission                                                                                                                                                                | Considerations                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Natural exposure including situations<br/>where infection has occurred without<br/>experimental intervention (e.g. infection in<br/>wild or farmed populations).</li> </ol> | References that reported invasive experimental procedures as the route of transmission were not used as evidence for infection (i.e. Article 1.5.4.). |
| <ul> <li>OR</li> <li>2. Non-invasive experimental procedures: e.g. cohabitation with infected hosts, infection by immersion, or by ingestion.</li> </ul>                             | References that reported co-infections were noted as such and were interpreted with caution.                                                          |

# 2.2. Stage 2: Criteria to determine whether the pathogenic agent has been adequately identified (as described in Article 1.5.5.):

Table 2 describes the pathogen identification methods accepted by the *ad hoc* Group for the assessments, as well as some considerations when applying Stage 2 to support susceptibility to one of the following: infection with RSIV (genogroup), infection with ISKNV (genogroup), infection with TRBIV (genogroup) or infection with *Megalocytivirus* (excluding SDDV).

#### Table 2: Pathogen identification

| Pathogen Identification to the<br>level of <i>Megalocytivirus</i> genus<br>excluding SDDV (i.e. RSIV,<br>ISKNV and TRBIV genogroups<br>only) | Pathogen Identification to the<br>level of genogroup (RSIV,<br>ISKNV, TRBIV) | Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Immunological methods (e.g.<br>IFAT or IHC) (e.g. Kurita &<br>Nakajima, 2012)<br>OR<br>PCR (e.g. Mohr <i>et al.</i> , 2015)                  | PCR<br>AND<br>Sequence analysis (e.g. Kurita &<br>Nakajima, 2012)            | Antibodies for RSIV cross react<br>with, and cannot be used to<br>differentiate between, the<br>genogroups, RSIV, ISKNV and<br>TRBIV (IFAT alone is not<br>sufficient to differentiate the three<br>viruses). Consequently, they were<br>adequate for identifying ISKNV at<br>the species (but not genogroup)<br>level.<br>Monoclonal antibody (M10)<br>provided by the WOAH reference<br>lab can be used to indicate<br>infection with the three<br>genogroups of <i>Megalocytivirus</i><br>(RSIV, ISKNV and TRBIV).<br>Further, it does not react with<br>SDDV.<br>PCR and sequence analysis can<br>target various (and single or<br>multiple) regions of the genome<br>(e.g. MCP, ATPase, myristylated<br>membrane protein gene, K2,<br>laminin-like protein, and<br>phosphatase, genes). MCP or<br>ATPase loci or multi-loci analyses<br>were primarily used but other<br>regions were not excluded when<br>phylogenetic analysis<br>demonstrated strong homology<br>with reference strains. Lack of<br>standardized or validated<br>measures of discrimination lend<br>uncertainty to genogroup<br>differentiation. |

# 2.3. Stage 3: Criteria to determine whether the evidence indicates that presence of the pathogenic agent constitutes an infection (as described in Article 1.5.6.):

Criteria A to D, as described in Article 1.5.6. and presented below, were used to determine if there was sufficient evidence for one of the following: infection with RSIV (genogroup), infection with ISKNV (genogroup), infection with TRBIV (genogroup) or infection with *Megalocytivirus* (excluding SDDV) in the suspected host species:

- A. The pathogenic agent is multiplying in the host, or developing stages of the pathogenic agent are present in or on the host<sup>1</sup>;
- B. Viable pathogenic agent is isolated from the proposed susceptible species, or infectivity is demonstrated by way of transmission to naïve individuals;
- C. Clinical or pathological changes are associated with the infection;
- D. The specific location of the pathogen corresponds with the expected target tissues.

Evidence to support criterion A alone was sufficient to determine infection. In the absence of evidence to meet criterion A, satisfying at least two of criteria B, C or D were required to determine infection.

Table 3 describes the criteria for assessment of Stage 3 to support susceptibility to infection with RSIV (genogroup), infection with ISKNV (genogroup), infection with TRBIV (genogroup) and infection with *Megalocytivirus* (excluding SDDV).

#### Table 3: Evidence of infection (note this criterion is the same for all assessments)

| Evidence of infection                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                           |                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| A: Replication                                                                                                                                                                                                                                                                              | B: Viability / Infectivity                                                                                                                                                           | C: Pathology /<br>Clinical signs*                                                                                                                                                                                                                                         | D: Location                                                                                |
| <ol> <li>Sequential virus<br/>titration over time</li> <li>OR</li> </ol>                                                                                                                                                                                                                    | <ol> <li>Isolation by cell<br/>culture</li> <li>OR</li> </ol>                                                                                                                        | <ol> <li>Pale gills, erratic<br/>swimming, lethargy,<br/>enlarged spleen</li> </ol>                                                                                                                                                                                       | 1. Infection found in gill<br>lamellae or<br>intestine**                                   |
| <ul> <li><b>OR</b></li> <li>2. Demonstration of increasing copy number over time by qPCR with confirmatory PCR/sequencing</li> <li><b>OR</b></li> <li>3. TEM showing virions in host cells</li> <li><b>OR</b></li> <li>4. Products (e.g. antigens) of virus replication detected</li> </ul> | <ol> <li>Cohabitation with<br/>passage to a<br/>susceptible host</li> <li>OR</li> <li>Isolation of virus<br/>from a host and IP<br/>injection into a<br/>susceptible host</li> </ol> | <ul> <li>OR</li> <li>2. Presence of abnormally enlarged cells in tissue imprint or histological sections of the spleen, heart, kidney, liver, intestine or gill</li> <li>OR</li> <li>3. Mortality in experimental virus-exposed group but not in control group</li> </ul> | OR<br>2. Identification in<br>visceral organs such<br>as spleen, heart,<br>kidney or liver |

\* Pathology/Clinical signs may be non-specific, variable and include some or all of the characteristics listed.

\*\* As demonstrated by histology, immunohistochemistry (IHC) or in-situ hybridisation (ISH).

#### 3. Results

If Chapter 10.8. of the Aquatic Code and Chapter 2.3.7. of the Aquatic Manual are maintained as Infection with RSIV, the species proposed to be listed in the respective articles are included below. However, the *ad hoc* Group report also shows the impact to the list of susceptible species in the Aquatic Code and list of susceptible species and species with incomplete evidence in the Aquatic Manual if the chapter was amended to Infection with Megalocytivirus. For species assessed for infection with Megalocytivirus (excluding SDDV), the *ad hoc* 

<sup>&</sup>lt;sup>1</sup> For the purposes of the assessments for susceptibility to infection with red sea bream iridovirus and infection with infectious spleen and kidney necrosis virus, replication 'on the host' was not considered to apply.

Group report also includes the specific genogroup (if possible) assessed, which aligns with the approach taken for infection with viral haemorrhagic septicaemia.

#### Infection with red seabream iridovirus

The *ad hoc* Group agreed that five of the species currently included in Article 10.8.2 as susceptible to infection with red seabream iridovirus (genogroup), and nine additional species, not previously listed, meet the criteria for listing as susceptible to infection with red seabream iridovirus in accordance with Chapter 1.5. of the *Aquatic Code*. These are proposed to be listed in Article 10.8.2. of Chapter 10.8. Infection with red seabream iridovirus.

| Family           | Scientific name          | Common name                     |
|------------------|--------------------------|---------------------------------|
| Butidae          | Oxyeleotris marmorata    | marble goby                     |
| Corongidoo       | Seriola quinqueradiata   | Japanese amberjack <sup>2</sup> |
| Carangidae       | Trachinotus carolinus    | Florida pompano                 |
| Centrarchidae    | Lepomis macrochirus      | bluegill                        |
| Latidae          | Lates calcarifer         | barramundi                      |
| Orde yn ethide e | Oplegnathus fasciatus    | barred knifejaw <sup>3</sup>    |
| Oplegnathidae    | Oplegnathus punctatus    | spotted knifejaw                |
| Osphronemidae    | Macropodus opercularis   | paradise fish                   |
| Paralichthyidae  | Paralichthys olivaceus   | bastard halibut                 |
| Sciaenidae       | Larimichthys crocea      | large yellow croaker            |
| Sinipercidae     | Siniperca chuatsi        | Mandarin fish                   |
| Crevides         | Acanthopagrus schlegelii | blackhead seabream              |
| Sparidae         | Pagrus major             | red sea bream                   |
| Synanceiidae     | Inimicus japonicus       | no common name                  |

<sup>2</sup> Based on FAOTERM and www.fishbase.se the common name for Seriola quinqueradiata is Japanese amberjack.

<sup>3</sup> Based on FAOTERM and www.fishbase.se the common name for *Oplegnathus fasciatus* is barred knifejaw.

Seven species, bluefin tuna (*Thunnus thynnus*), flathead grey mullet (*Mugil cephalus*), greater amberjack (*Seriola dumerili*), groupers (*Epinephelus spp.*), red drum (*Sciaenops ocellatus*), sea bass (*Lateolabrax sp.*) and striped jack (*Pseudocaranx dentex*) were assessed as not meeting the criteria and were proposed to be removed from Article 10.8.2. of Chapter 10.8. of the *Aquatic Code*.

Five species, goldlined seabream (*Rhabdosargus sarba*), Japanese seabass (*Lateolabrax japonicus*), pearl gourami (*Trichopodus leerii*), rockfish (*Sebastes schlegeli*) and silver pomfret (*Pampus argenteus*) were assessed as having incomplete evidence of susceptibility and were proposed to be included in Section 2.2.2., of Chapter 2.3.7. of the *Aquatic Manual*.

Pathogen-specific positive PCR results were reported in the following two species, common ponyfish (*Leiognathus equulus*) and giant grouper (*Epinephelus lanceolatus*), but an active infection had not been demonstrated. These species were proposed to be included in the second paragraph of Section 2.2.2. of Chapter 2.3.7. of the *Aquatic Manual*.

#### Infection with Megalocytivirus (excluding SDDV)

The following species were assessed to meet the criteria for listing as susceptible to infection with *Megalocytivirus*, in accordance with Chapter 1.5., and the *ad hoc* Group has proposed these species to be included in Article 10.8.2. of a revised Chapter 10.8. Infection with *Megalocytivirus*. These species are shown in the table below:

| Family     | Scientific name       | Common name          | Assessed for:     |
|------------|-----------------------|----------------------|-------------------|
| Apogonidae | Pterapogon kauderni   | Banggai cardinalfish | ISKNV (genogroup) |
| Butidae    | Oxyeleotris marmorata | marble goby          | RSIV (genogroup)  |
| Dulluae    |                       |                      | ISKNV (genogroup) |

| Family            | Scientific name                             | Common name            | Assessed for:                           |
|-------------------|---------------------------------------------|------------------------|-----------------------------------------|
|                   | Pseudocaranx dentex                         | white trevally         | <i>Megalocytivirus</i> (excluding SDDV) |
|                   | Seriola dumerili                            | greater amberjack      | <i>Megalocytivirus</i> (excluding SDDV) |
|                   | Seriola lalandi                             | goldstripe amberjack   | <i>Megalocytivirus</i> (excluding SDDV) |
| Carangidae        | Seriola quinqueradiata                      | Japanese amberjack     | RSIV (genogroup)                        |
|                   | Seriola quinqueradiata x<br>Seriola lalandi | Buri-hira hybrid       | <i>Megalocytivirus</i> (excluding SDDV) |
|                   | Trachinotus blochii                         | snubnose pompano       | <i>Megalocytivirus</i> (excluding SDDV) |
|                   | Trachinotus carolinus                       | Florida pompano        | RSIV (genogroup)                        |
|                   | Trachurus japonicus                         | Japanese jack mackerel | <i>Megalocytivirus</i> (excluding SDDV) |
| Centrarchidae     | Lepomis macrochirus                         | bluegill               | RSIV (genogroup)                        |
|                   | Astronotus ocellatus                        | Oscar                  | ISKNV (genogroup)<br>TRBIV (genogroup)  |
|                   | Etroplus suratensis                         | pearlspot              | ISKNV (genogroup)                       |
| Cichlidae         | Oreochromis niloticus                       | Nile tilapia           | ISKNV (genogroup)                       |
|                   | Pterophyllum altum                          | deep angelfish         | ISKNV (genogroup)                       |
|                   | Pterophyllum scalare                        | freshwater angelfish   | ISKNV (genogroup)                       |
| Cyprinidae        | Epalzeorhynchos frenatum                    | rainbow sharkminnow    | ISKNV (genogroup)                       |
| Danionidae        | Danio rerio                                 | zebrafish              | ISKNV (genogroup)                       |
| Ephippidae        | Platax orbicularis                          | orbiculate batfish     | ISKNV (genogroup)                       |
| Girellidae        | Girella punctata                            | largescale blackfish   | Megalocytivirus (excluding SDDV)        |
| Haemulidae        | Parapristipoma trilineatum                  | chicken grunt          | <i>Megalocytivirus</i> (excluding SDDV) |
| Haemulidae        | Plectorhinchus cinctus                      | crescent sweetlips     | <i>Megalocytivirus</i> (excluding SDDV) |
|                   |                                             |                        | RSIV (genogroup)                        |
| Latidae           | Lates calcarifer                            | barramundi             | ISKNV (genogroup)                       |
|                   |                                             |                        | TRBIV (genogroup)                       |
| Lethrinidae       | Lethrinus haematopterus                     | Chinese emperor        | <i>Megalocytivirus</i> (excluding SDDV) |
|                   | Lethrinus nebulosus                         | spangled emperor       | <i>Megalocytivirus</i> (excluding SDDV) |
| Mugilidae         | Mugil cephalus                              | flathead grey mullet   | <i>Megalocytivirus</i> (excluding SDDV) |
| Nothobranchiidae  | Aphyosemion gardneri                        | steel blue killifish   | ISKNV (genogroup)                       |
| Orale an ethide e | Oplegnathus fasciatus                       | barred knifejaw        | RSIV (genogroup)<br>ISKNV (genogroup)   |
| Oplegnathidae     | Oplegnathus punctatus                       | spotted knifejaw       | RSIV (genogroup)<br>ISKNV (genogroup)   |
|                   | Macropodus opercularis                      | paradise fish          | RSIV (genogroup)                        |
|                   | Osphronemus goramy                          | giant gourami          | ISKNV (genogroup)                       |
| o                 | Trichogaster lalius                         | dwarf gourami          | ISKNV (genogroup)                       |
| Osphronemidae     |                                             |                        | TRBIV (genogroup)                       |
|                   | Trichopodus leerii                          | pearl gourami          | ISKNV (genogroup)                       |
|                   | Trichopodus microlepis                      | moonlight gourami      | ISKNV (genogroup)                       |
| Paralichthyidae   | Paralichthys olivaceus                      | bastard halibut        | RSIV (genogroup)                        |

| Family         | Scientific name                  | Common name                        | Assessed for:                           |
|----------------|----------------------------------|------------------------------------|-----------------------------------------|
|                |                                  |                                    | TRBIV (genogroup)                       |
|                |                                  |                                    | <i>Megalocytivirus</i> (excluding SDDV) |
| Percichthyidae | Maccullochella peelii            | Murray cod                         | ISKNV (genogroup)                       |
| Pleuronectidae | Verasper variegatus              | spotted halibut                    | <i>Megalocytivirus</i> (excluding SDDV) |
|                | Poecilia latipinna               | sailfin molly                      | ISKNV (genogroup)                       |
| Poeciliidae    | Poecilia reticulata              | guppy                              | <i>Megalocytivirus</i> (excluding SDDV) |
|                | Xiphophorus hellerii             | green swordtail                    | ISKNV (genogroup)                       |
|                | Xiphophorus maculatus            | southern platyfish                 | ISKNV (genogroup)                       |
| Procatopodidae | Poropanchax normani              | Norman's lampeye                   | <i>Megalocytivirus</i> (excluding SDDV) |
| Rachycentridae | Rachycentron canadum             | Cobia                              | <i>Megalocytivirus</i> (excluding SDDV) |
| Sciaenidae     | Larimichthys crocea              | large yellow croaker               | RSIV (genogroup)                        |
|                | Sciaenops ocellatus              | red drum                           | ISKNV (genogroup)                       |
|                | Scomber japonicus                | chub mackerel                      | <i>Megalocytivirus</i> (excluding SDDV) |
| Scombridae     | Scomberomorus niphonius          | Japanese Spanish<br>mackerel       | <i>Megalocytivirus</i> (excluding SDDV) |
|                | Thunnus orientalis               | Pacific bluefin tuna               | Megalocytivirus (excluding SDDV)        |
| Scophthalmidae | Scophthalmus maximus             | turbot                             | TRBIV (genogroup)                       |
|                | Epinephelus akaara               | Hong Kong grouper                  | <i>Megalocytivirus</i> (excluding SDDV) |
|                | Epinephelus awoara               | yellow grouper                     | Megalocytivirus (excluding SDDV)        |
|                | Epinephelus bruneus              | longtooth grouper                  | Megalocytivirus (excluding SDDV)        |
| Comercideo     | Epinephelus coioides             | orange-spotted grouper             | Megalocytivirus (excluding SDDV)        |
| Serranidae     | Epinephelus fuscoguttatus        | brown-marbled grouper              | Megalocytivirus (excluding SDDV)        |
|                | Epinephelus fuscoguttatus<br>ୁ × | pearl gentian grouper<br>(hybrids) | ISKNV (genogroup)                       |
|                | Epinephelus malabaricus          | Malabar grouper                    | <i>Megalocytivirus</i> (excluding SDDV) |
|                | Epinephelus<br>septemfasciatus   | convict grouper                    | <i>Megalocytivirus</i> (excluding SDDV) |
| Sinipercidae   | Siniperca chuatsi                | Mandarin fish                      | RSIV (genogroup)<br>ISKNV (genogroup)   |
|                | Acanthopagrus schlegelii         | blackhead seabream                 | RSIV (genogroup)                        |
| Sparidae       | Dentex tumifrons                 | yellowback seabream                | Megalocytivirus (excluding SDDV)        |
|                | Pagrus major                     | red sea bream                      | RSIV (genogroup)                        |
| Stromateidae   | Pampus argenteus                 | silver pomfret                     | RSIV (genogroup)                        |
| Synanceiidae   | Inimicus japonicus               | no common name                     | RSIV (genogroup)                        |
| Tetraodontidae | Takifugu rubripes                | tiger pufferfish                   | <i>Megalocytivirus</i> (excluding SDDV) |

The following species were assessed as having incomplete evidence of susceptibility to infection with *Megalocytivirus*, in accordance with Chapter 1.5., and the *ad hoc* Group has proposed these species to be included in Section 2.2.2. of a revised Chapter 2.3.7. Infection with *Megalocytivirus* of the *Aquatic Manual*.

| Family          | Scientific name           | Common name           | Assessed for:                           |
|-----------------|---------------------------|-----------------------|-----------------------------------------|
|                 | Cleithracara maronii      | keyhold cichlid       | TRBIV (genogroup)                       |
| Cichlidae       | Mikrogeophagus ramirezi   | ram cichlid           | ISKNV (genogroup)                       |
|                 | Pterophyllum scalare      | freshwater angelfish  | TRBIV (genogroup)                       |
| Helostomatidae  | Helostoma temminckii      | kissing gourami       | ISKNV (genogroup)                       |
| Lateolabracidae | Lateolabrax japonicus     | Japanese seabass      | RSIV (genogroup)                        |
| Oplegnathidae   | Oplegnathus fasciatus     | barred knifejaw       | TRBIV (genogroup)                       |
|                 | Betta splendens           | siamese fighting fish | <i>Megalocytivirus</i> (excluding SDDV) |
| Osphronemidae   | Trichopodus leerii        | pearl gourami         | RSIV (genogroup)                        |
|                 | Trickeneduce trickenterus | three spot gourami    | ISKNV (genogroup)                       |
|                 | Trichopodus trichopterus  |                       | TRBIV (genogroup)                       |
|                 | Poecilia sphenops         | molly                 | ISKNV (genogroup)                       |
| Poeciliidae     | Poecilia velifera         | sail-fin molly        | <i>Megalocytivirus</i> (excluding SDDV) |
|                 | Xiphophorus variatus      | variable platyfish    | ISKNV (genogroup)                       |
| Sebastidae      | Sebastes schlegeli        | rockfish              | RSIV (genogroup)                        |
| Sparidae        | Rhabdosargus sarba        | goldlined seabream    | RSIV (genogroup)                        |
|                 | , analas as cangus sansa  | golamoa coubroam      | ISKNV (genogroup)                       |

Pathogen-specific PCR results for infection with *Megalocytivirus* had been reported in the following species but an active infection had not been demonstrated. These species were proposed to be included in the second paragraph of Section 2.2.2. of a revised Chapter 2.3.7. Infection with *Megalocytivirus* in the *Aquatic Manual*. These species are shown in the table below:

| Family            | Scientific name            | Common name             | Assessed for:                           |
|-------------------|----------------------------|-------------------------|-----------------------------------------|
|                   | Alepes djedaba             | shrimp scad             | ISKNV (genogroup)                       |
|                   | Caranx sexfasciatus        | bigeye trevally         | ISKNV (genogroup)                       |
| Carongidaa        | Decapterus maruadsi        | Japanese scad           | ISKNV (genogroup)                       |
| Carangidae        | Scomberoides lysan         | doublespotted queenfish | ISKNV (genogroup)                       |
|                   | Scomberoides tala          | barred queenfish        | ISKNV (genogroup)                       |
|                   | Selaroides leptolepis      | yellowstripe scad       | ISKNV (genogroup)                       |
| Characidae        | Moenkhausia costae         | tetra fortune           | <i>Megalocytivirus</i> (excluding SDDV) |
| Clupeidae         | Konosirus punctatus        | dotted gizzard shad     | ISKNV (genogroup)                       |
| Cobitidae         | Misgurnus anguillicaudatus | pond loach              | <i>Megalocytivirus</i> (excluding SDDV) |
| Cynoglossidae     | Cynoglossus sinicus        | no common name          | ISKNV (genogroup)                       |
| O municipal de la | Carassius auratus          | goldfish                | ISKNV (genogroup)                       |
| Cyprinidae        | Cyprinus carpio            | common carp             | ISKNV (genogroup)                       |
| Danionidae        | Danio albolineatus         | pearl danio             | ISKNV (genogroup)                       |
| Engraulidae       | Thryssa mystax             | moustached thryssa      | ISKNV (genogroup)                       |
| Haemuliae         | Plectorhinchus pictus      | trout sweetlips         | ISKNV (genogroup)                       |
| Hemiodontidae     | Hemiodus gracilis          | no common name          | <i>Megalocytivirus</i> (excluding SDDV) |
| Leiognathidae     | Deveximentum insidiator    | pugnose ponyfish        | ISKNV (genogroup)                       |

| Family         | Scientific name                  | Common name                       | Assessed for:                           |
|----------------|----------------------------------|-----------------------------------|-----------------------------------------|
|                | Leiognathus brevirostris         | shortnose ponyfish                | ISKNV (genogroup)                       |
|                | Leiognathus equulus              | common ponyfish                   | RSIV (genogroup)                        |
|                | Photopectoralis bindus           | orangefin ponyfish                | ISKNV (genogroup)                       |
| Loricariidae   | Hypostomus plecostomus           | suckermouth catfish               | <i>Megalocytivirus</i> (excluding SDDV) |
|                | Lutjanus argentimaculatus        | mangrove red snapper              | ISKNV (genogroup)                       |
| Lutionides     | Lutjanus johnii                  | John's snapper                    | ISKNV (genogroup)                       |
| Lutjanidae     | Lutjanus russelli                | Russell's snapper                 | ISKNV (genogroup)                       |
|                | Lutjanus sanguineus              | humphead snapper                  | ISKNV (genogroup)                       |
| Monacanthidae  | Paramonacanthus<br>japonicus     | hair-finned leatherjacket         | ISKNV (genogroup)                       |
|                | Macropodus opercularis           | paradise fish                     | ISKNV (genogroup)                       |
| Osphronemidae  | Trichogaster labiosa             | thick lipped gourami              | <i>Megalocytivirus</i> (excluding SDDV) |
| Osteoglossidae | Arapaima gigas                   | araipama                          | <i>Megalocytivirus</i> (excluding SDDV) |
| Pangasiidae    | Pangasianodon<br>hypothalymus    | striped catfish                   | Megalocytivirus (excluding SDDV)        |
| Polynemidae    | Eleutheronema<br>tetradactylum   | fourfinger threadfin              | ISKNV (genogroup)                       |
| Pomacanthidae  | Pomacanthus navarchus            | bluegirdled anglefish             | Megalocytivirus (excluding SDDV)        |
|                | Dendrophysa russelii             | goatee croaker                    | ISKNV (genogroup)                       |
| Sciaenidae     | Otolithes ruber                  | tigertooth croaker                | ISKNV (genogroup)                       |
| Scideniuae     | Pennahia argentata               | silver croaker                    | ISKNV (genogroup)                       |
|                | Pennahia macrocephalus           | big-head pennah croaker           | ISKNV (genogroup)                       |
| Scombridae     | Scomberomorus<br>commerson       | narrow-barred Spanish<br>mackerel | ISKNV (genogroup)                       |
|                | Cephalopholis boenak             | chocolate hind                    | ISKNV (genogroup)                       |
|                | Epinephelus bleekeri             | duskytail grouper                 | ISKNV (genogroup)                       |
|                | Epinephelus chlorostigma         | brownspotted grouper              | ISKNV (genogroup)                       |
| Serranidae     | Epinephelus<br>fasciatomaculosus | rock grouper                      | ISKNV (genogroup)                       |
|                | Epinephelus lanceolatus          | giant grouper                     | RSIV (genogroup)                        |
|                | Epinephelus merra                | honeycomb grouper                 | ISKNV (genogroup)                       |
|                | Pygocentrus nattereri            | red piranha                       | ISKNV (genogroup)                       |
| Serrasalmidae  | Serrasalmus gibbus               | no common name                    | Megalocytivirus (excluding SDDV)        |
| Siganidae      | Siganus canaliculatus            | rabbitfish                        | ISKNV (genogroup)                       |
| Stromateidae   | Pampus argenteus                 | silver pomfret                    | ISKNV (genogroup)                       |
| Synodontidae   | Saurida elongata                 | slender lizardfish                | ISKNV (genogroup)                       |
| Syphyraenidae  | Sphyraena forsteri               | bigeye barracuda                  | ISKNV (genogroup)                       |
| Terapontidae   | Pelates quadrilineatus           | fourline grunter                  | ISKNV (genogroup)                       |
|                | Terapon jarbua                   | Jarbua terapon                    | ISKNV (genogroup)                       |
| Tetraodontidae | Lagocephalus spadiceus           | half-smooth golden<br>pufferfish  | ISKNV (genogroup)                       |

| Family | Scientific name       | Common name          | Assessed for:     |
|--------|-----------------------|----------------------|-------------------|
|        | Takifugu alboplumbeus | no common name       | ISKNV (genogroup) |
|        | Takifugu xanthopterus | yellowfin pufferfish | ISKNV (genogroup) |

#### 4. Assessments

Host species were determined to be susceptible based on the combination of assessment outcomes as outlined in Article 1.5.7.

Table 4 below describes the different scores and outcomes of the assessments undertaken by the *ad hoc* Group.

#### Table 4: Scores and Outcome of assessments

| Score | Outcome                                                                                                                                                                                                                                                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Species assessed as susceptible (as described in Article 1.5.7.).                                                                                                                                                                                                                                                          |
|       | <u>Infection with red seabream iridovirus (genogroup)</u> : These species were proposed for inclusion in Article 10.8.2. of Chapter 10.8., Infection with red seabream iridovirus, of the <i>Aquatic Code</i> and Section 2.2.1. of Chapter 2.3.7., Infection with red seabream iridovirus, of the <i>Aquatic Manual</i> . |
|       | Infection with infectious spleen and kidney necrosis virus (genogroup): These species were proposed to the Commission for decision.                                                                                                                                                                                        |
|       | Infection with turbot reddish body iridovirus (genogroup): These species were proposed to the Commission for decision.                                                                                                                                                                                                     |
|       | Infection with <i>Megalocytivirus</i> (excluding SDDV): These species were proposed to the Commission for decision.                                                                                                                                                                                                        |
| 2     | Species assessed as having incomplete evidence for susceptibility (as described in Article 1.5.8.).                                                                                                                                                                                                                        |
|       | <u>Infection with red seabream iridovirus (genogroup)</u> : These species for infection with red seabream iridovirus were proposed for inclusion in Section 2.2.2., Species with incomplete evidence for susceptibility of Chapter 2.3.7., Infection with red seabream iridovirus, of the <i>Aquatic Manual</i> .          |
|       | Infection with infectious spleen and kidney necrosis virus (genogroup): These species were proposed to the Commission for decision.                                                                                                                                                                                        |
|       | Infection with turbot reddish body iridovirus (genogroup): These species were proposed to the Commission for decision.                                                                                                                                                                                                     |
|       | Infection with <i>Megalocytivirus</i> (excluding SDDV): These species were proposed to the Commission for decision.                                                                                                                                                                                                        |
| 3     | Species assessed as not meeting the criteria or for which there was unresolved or conflicting information.                                                                                                                                                                                                                 |
|       | However, this category also included species where pathogen-specific positive PCR results had been reported, but an active infection had not been demonstrated. These species were proposed as follows.                                                                                                                    |
|       | <u>Infection with red seabream iridovirus (genogroup)</u> : These species were proposed for inclusion in a separate paragraph in Section 2.2.2, Species with incomplete evidence for susceptibility, of Chapter 2.3.7. of the <i>Aquatic Manual</i> .                                                                      |
|       | Infection with infectious spleen and kidney necrosis virus (genogroup): These species were proposed to the Commission for decision.                                                                                                                                                                                        |
|       | Infection with turbot reddish body iridovirus (genogroup): These species were proposed to the Commission for decision.                                                                                                                                                                                                     |
|       | Infection with <i>Megalocytivirus</i> (excluding SDDV): These species were proposed to the Commission for decision.                                                                                                                                                                                                        |
| 4     | Species assessed as non-susceptible.                                                                                                                                                                                                                                                                                       |

| Score | Outcome                                                           |
|-------|-------------------------------------------------------------------|
| NS    | Species not scored due to insufficient or irrelevant information. |

Assessments for host susceptibility to infection with red seabream iridovirus (genogroup), infectious spleen and kidney necrosis virus (genogroup), turbot reddish body iridovirus (genogroup) and *Megalocytivirus* (excluding SDDV) together with the outcomes and relevant references are shown in the tables below.

### Table 5: Assessments for RSIV genogroup

| Family        | Scientific name           | Common name           | Stage 1: Route  | Stage 2: Pathogen                             | Stage 3 | : Evidenc | e of infe | ction | Outcome | References                        |
|---------------|---------------------------|-----------------------|-----------------|-----------------------------------------------|---------|-----------|-----------|-------|---------|-----------------------------------|
|               |                           |                       | of transmission | identification                                | А       | В         | С         | D     |         |                                   |
|               |                           | ·                     |                 | Score 1                                       |         |           |           | •     | ·       | ·                                 |
| Butidae       | Oxyeleotris               | marble goby           | N               | PCR and sequence<br>analysis                  | ND      | ND        | Y         | Y     | 1       | Chen <i>et al</i> ., 2013         |
| Dulluae       | marmorata                 | marble goby           | N               | PCR and sequence<br>analysis                  | ND      | ND        | ND        | Y     | 2       | Huang <i>et al</i> ., 2011        |
|               |                           |                       | Ν               | qPCR, PCR and sequence analysis               | Y       | ND        | ND        | Y     | 1       | Kawato <i>et al</i> ., 2021a      |
|               | Seriola<br>quinqueradiata | Japanese<br>amberjack | E               | PCR and sequence analysis <sup>4</sup>        | ND      | Y         | Y         | Y     | 1       | Ito <i>et al</i> ., 2014          |
|               |                           |                       | N and E         | PCR and sequence<br>analysis <sup>4</sup>     | Y       | Y         | Y         | Y     | 1       | Ito <i>et al</i> ., 2013          |
| Carangidae    |                           | chinotus<br>olinus    | N               | PCR, sequence and<br>phylogenetic<br>analyses | ND      | ND        | Y         | Y     | 1       | Koda <i>et al</i> ., 2019         |
|               | l rachinotus<br>carolinus |                       | N               | PCR and sequence<br>analysis                  | ND      | ND        | Y         | Y     | 1       | Koda <i>et al</i> ., 2018         |
|               |                           |                       | N               | PCR and sequence<br>analysis                  | Y       | ND        | Y         | Y     | 1       | Lopez-Porras <i>et al</i> ., 2018 |
| Centrarchidae | Lepomis<br>macrochirus    | bluegill              | N               | PCR and sequence<br>analysis                  | Y       | Y         | Y         | Y     | 1       | Liu <i>et al</i> ., 2019          |
| Latidae       | Lates calcarifer          | barramundi            | N               | PCR and sequence<br>analysis                  | Y       | ND        | Y         | Y     | 1       | Sumithra <i>et al.</i> , 2022     |
| Laudae        | Lates carcamer            | parramundi            | Ν               | PCR and sequence<br>analysis                  | ND      | ND        | Y         | Y     | 2       | Wang <i>et al.</i> , 2009         |
|               |                           |                       | N               | PCR and sequence<br>analysis <sup>5</sup>     | ND      | ND        | Y         | Y     | 1       | Jeong <i>et al.</i> , 2008b       |
| Oplegnathidae | Oplegnathus<br>fasciatus  | barred knifejaw       | Ν               | PCR and sequence<br>analysis                  | ND      | Y         | Y         | ND    | 1       | Do <i>et al.</i> , 2004           |
|               |                           |                       | Ν               | PCR and sequence<br>analysis                  | ND      | ND        | Y         | Y     | 1       | Jeong <i>et al.</i> , 2003        |

| Family          | Scientific name                 | Common name           | Stage 1: Route  | Stage 2: Pathogen                         | Stage 3 | : Evidenc | e of infec | tion | Outcome        | References                    |
|-----------------|---------------------------------|-----------------------|-----------------|-------------------------------------------|---------|-----------|------------|------|----------------|-------------------------------|
|                 |                                 |                       | of transmission | identification                            | Α       | В         | С          | D    | 1              |                               |
|                 | Oplegnathus punctatus           | spotted knifejaw      | N               | PCR and sequence<br>analysis              | Y       | Y         | ND         | Y    | 1 <sup>6</sup> | Dong <i>et al</i> ., 2010     |
| Osphronemidae   | Macropodus<br>opercularis       | paradise fish         | Ν               | PCR and sequence<br>analysis              | Y       | Y         | Y          | Y    | 1              | Liu <i>et al.</i> , 2019      |
| Paralichthyidae | Paralichthys olivaceus          | bastard halibut       | N               | PCR and sequence<br>analysis              | Y       | Y         | Y          | Y    | 1              | Jung <i>et al</i> ., 2016     |
| Sciaenidae      | Larimichthys crocea             | large yellow croaker  | N               | PCR and sequence<br>analysis              | Y       | Y         | Y          | Y    | 1              | Chen <i>et al</i> ., 2003     |
| Sinipercidae    | Siniperca chuatsi               | Mandarin fish         | N               | PCR and sequence<br>analysis              | ND      | Y         | Y          | Y    | 1              | Dong <i>et al</i> ., 2013     |
|                 | Acanthopagrus<br>schlegelii     | blackhead<br>seabream | Ν               | PCR and sequence<br>analysis              | ND      | ND        | Y          | Y    | 1              | Jeong <i>et al.,</i> 2003     |
| Sparidae        |                                 |                       | Ν               | PCR and sequence<br>analysis              | ND      | ND        | ND         | ND   | 1              | Kurita <i>et al</i> ., 2002   |
|                 | Pagrus major                    | red sea bream         | Ν               | PCR, sequence<br>analysis and qPCR        | Y       | Y         | ND         | Y    | 1              | Kawato <i>et al</i> ., 2021b  |
|                 |                                 |                       | N               | VI <sup>7</sup>                           | Y       | Y         | Y          | Y    | 1              | Inouye <i>et al</i> ., 1992   |
| Synanceiidae    | Inimicus japonicus <sup>8</sup> |                       | Ν               | qPCR, PCR and sequence analysis           | Y       | Y         | Y          | Y    | 1              | Kawato <i>et al</i> . 2017c   |
|                 |                                 |                       |                 | Score 2                                   |         |           |            |      |                |                               |
| Lateolabracidae | Lateolabrax<br>japonicus        | Japanese seabass      | Ν               | PCR and sequence<br>analysis              | ND      | ND        | ND         | Y    | 2              | Do <i>et al</i> ., 2005       |
|                 | Japonicus                       |                       | N               | IFAT                                      | Y       | ND        | Y          | Y    | NS             | Matsuoka <i>et al</i> ., 1996 |
| Osphronemidae   | Trichopodus leerii              | pearl gourami         | N and E         | PCR and sequence<br>analysis <sup>5</sup> | ND      | ND        | Y          | Y    | 2 <sup>9</sup> | Jeong <i>et al.</i> , 2008b   |
| Sebastidae      | Sebastes schlegeli              | rockfish              | Ν               | PCR and sequence<br>analysis              | ND      | ND        | Y          | Y    | 2              | Do <i>et al</i> ., 2005       |
| ออมสรแนสย       | Sebasies scinegen               |                       | Ν               | PCR and sequence<br>analysis              | ND      | ND        | ND         | Y    | 3              | Kim <i>et al</i> ., 2002      |
| Sparidae        | Rhabdosargus<br>sarba           | goldlined seabream    | Ν               | PCR and sequence<br>analysis              | ND      | ND        | Y          | Y    | 2 <sup>9</sup> | Wang <i>et al.,</i> 2009      |
| Stromateidae    | Pampus argenteus                | silver pomfret        | Ν               | PCR and sequence<br>analysis              | Y       | ND        | Y          | Y    | 2              | Ni <i>et al</i> ., 2021       |

| Family        | Scientific name                       | Common name                             | Stage 1: Route  | Stage 2: Pathogen            |    |    |    | ction | Outcome | References                        |
|---------------|---------------------------------------|-----------------------------------------|-----------------|------------------------------|----|----|----|-------|---------|-----------------------------------|
|               |                                       |                                         | of transmission | identification               | Α  | В  | С  | D     |         |                                   |
|               |                                       |                                         |                 | Score 3                      |    |    |    |       |         |                                   |
| Leiognathidae | Leiognathus<br>equulus                | common ponyfish                         | N               | PCR and sequence<br>analysis | ND | ND | ND | Y     | 3       | Wang <i>et al</i> ., 2009         |
|               | Epinephelus                           |                                         | N               | PCR and sequence analysis    | ND | ND | ND | Y     | 3       | Huang <i>et al</i> ., 2011        |
| Serranidae    | lanceolatus                           | giant grouper                           | N               | PCR and sequence analysis    | ND | ND | ND | Y     | 3       | Wang <i>et al.</i> , 2009         |
|               |                                       |                                         |                 | Not scored (NS)              |    |    |    |       |         |                                   |
| Moronidae     | Morone saxatilis x<br>Morone chrysops | striped sea bass x<br>white bass hybrid | N               | PCR and sequence<br>analysis | ND | ND | ND | ND    | NS      | Kurita & Nakajima, 2012           |
|               | Cromileptes altivel                   | humpback grouper                        | EI              | PCR                          | Y  | Y  | Y  | Y     | NS      | Mahardika <i>et al</i> ., 2004    |
| Serranidae    | Epinephelus tauvina                   | greasy grouper                          | N               | PCR and sequence<br>analysis | ND | Y  | Y  | Y     | NS      | Sudthongkong <i>et al.,</i> 2002a |
| Sparidae      | Acanthopagrus<br>latus                | yellowfin sea bream                     | N               | PCR and sequence analysis    | ND | ND | ND | ND    | NS      | Kurita & Nakajima, 2012           |

<sup>4</sup> Stock isolate (RSIV KagYT-96) has been sequenced and identified as RSIV in Kawato *et al.*, 2020.

<sup>5</sup> The sequence analysis is by extension as it relies on previous sequence analysis (Jeong *et al.*, 2003) of the isolate used in the challenge study.

<sup>6</sup> The WOAH Reference Laboratory for RSIV has isolated RSIV genogroup from spotted knifejaw giving this unique paper a second line of evidence.

<sup>7</sup> The full genome of the virus isolate (Ehime-1) from Inouye *et al.*, 1992 was sequenced in Kurita *et al.*, 2002.

<sup>8</sup> No common name was available on FAOTerm or www.fishbase.se.

<sup>9</sup> Only one study was available for assessment. The evidence provided was assessed by the *ad hoc* Group as having met the criteria for susceptibility and was scored as a '1'. However, the *ad hoc* Group was unable to find any additional studies or corroborative evidence within the study, and determined that this study alone was not sufficient for a final assessment of a '1'. As a result the *ad hoc* Group assessed this species as an overall score of a '2'.

# Table 6: Assessments for ISKNV genogroup

| Family     | Scientific name             | Common name             | Stage 1: Route  | Stage 2: Pathogen                             | Stage 3 | : Evidend | e of infe | tion | Outcome | References                              |
|------------|-----------------------------|-------------------------|-----------------|-----------------------------------------------|---------|-----------|-----------|------|---------|-----------------------------------------|
|            |                             |                         | of transmission | identification                                | А       | В         | С         | D    |         |                                         |
|            |                             |                         |                 | Score 1                                       |         |           |           |      |         | ·                                       |
| Apogonidae | Pterapogon kauderni         | Banggai<br>cardinalfish | N               | PCR and sequence<br>analysis                  | Y       | ND        | Y         | Y    | 1       | Weber <i>et al</i> ., 2009              |
| Butidae    | Oxyeleotris<br>marmorata    | marble goby             | N               | PCR and sequence<br>analysis                  | Y       | Y         | Y         | Y    | 1       | Wang <i>et al</i> ., 2011               |
|            | Astronotus ocellatus        | Oscar                   | Ν               | PCR and sequence<br>analysis                  | ND      | ND        | Y         | Y    | 1       | Baoprasertkul & Kaenchan,<br>2019       |
|            | Astronotus ocenatus         | Oscal                   | Ν               | PCR and sequence<br>analysis                  | Y       | ND        | ND        | Y    | 1       | Go <i>et al.</i> , 2016                 |
|            | Etroplus suratensis         | pearlspot               | Ν               | PCR and sequence<br>analysis                  | Y       | Y         | Y         | Y    | 1       | Swaminathan <i>et al</i> ., 2022        |
| Cichlidae  | ichlidae                    |                         | Ν               | PCR, sequence and phylogenetic analyses       | Y       | ND        | Y         | Y    | 1       | Figueiredo <i>et al</i> ., 2021         |
|            | Oreochromis<br>niloticus    | Nile tilapia            | N               | PCR and sequence analysis                     | Y       | Y         | Y         | Y    | 1       | Ramírez-Paredes <i>et al</i> .,<br>2020 |
|            |                             |                         | Ν               | PCR and sequence<br>analysis                  | Y       | ND        | Y         | Y    | 1       | Subramaniam <i>et al</i> ., 2016        |
|            | Pterophyllum scalare        | freshwater              | Ν               | PCR and sequence<br>analysis                  | ND      | Y         | ND        | Y    | 1       | Kawato <i>et al.</i> , 2020             |
|            | Plerophynum scalare         | angelfish               | Ν               | PCR and sequence<br>analysis                  | ND      | ND        | ND        | Y    | 2       | Go <i>et al.</i> , 2016                 |
| Cyprinidae | Epalzeorhynchos<br>frenatum | rainbow<br>sharkminnow  | Ν               | PCR, sequence and phylogenetic analyses       | ND      | Y         | Y         | Y    | 1       | Koda <i>et al</i> ., 2021               |
| Danionidae | Danio rerio                 | zebrafish               | N               | PCR, sequence and<br>phylogenetic<br>analyses | Y       | ND        | Y         | Y    | 1       | Bermudez <i>et al</i> ., 2018           |
|            |                             |                         | N               | PCR and sequence analysis                     | ND      | ND        | ND        | Y    | 2       | Subramaniam <i>et al</i> ., 2014        |

| Family                                      | Scientific name           | Common name          | Stage 1: Route               | Stage 2: Pathogen                       | Stage 3 | : Evidenc | e of infec | tion | Outcome                 | References                         |
|---------------------------------------------|---------------------------|----------------------|------------------------------|-----------------------------------------|---------|-----------|------------|------|-------------------------|------------------------------------|
|                                             |                           |                      | of transmission              | identification                          | Α       | В         | С          | D    |                         |                                    |
| Ephippidae                                  | Platax orbicularis        | orbiculate batfish   | N                            | PCR and sequence<br>analysis            | Y       | ND        | Y          | Y    | 1                       | Sriwanayos <i>et al.</i> , 2013    |
|                                             |                           |                      | Ν                            | PCR and sequence<br>analysis            | ND      | Y         | Y          | Y    | 1                       | Kerddee <i>et al</i> ., 2021       |
| Latidae                                     | Lates calcarifer          | barramundi           | N                            | PCR, sequence and phylogenetic analyses | Y       | Y         | Y          | Y    | 1                       | Zhu <i>et al</i> ., 2021           |
| Nothobranchiidae                            | Aphyosemion<br>gardneri   | steel blue killifish | N                            | PCR and sequence analysis               | ND      | ND        | Y          | Y    | 1                       | Nolan <i>et al</i> ., 2015         |
|                                             | Oplegnathus               | barred knifejaw      | Ν                            | PCR and sequence<br>analysis            | ND      | ND        | Y          | Y    | 1                       | Jeong <i>et al.</i> , 2008b        |
| Oplegnathidae                               | fasciatus                 | barred krillejaw     | Ν                            | PCR and sequence<br>analysis            | ND      | ND        | ND         | Y    | 2                       | Song <i>et al.</i> , 2008          |
|                                             | Oplegnathus punctatus     | spotted knifejaw     | Ν                            | PCR and sequence<br>analysis            | ND      | Y         | Y          | Y    | 1                       | Huang <i>et al</i> ., 2021         |
|                                             | Osphronemus<br>goramy     | giant gourami        | N                            | PCR and sequence<br>analysis            | Y       | Y         | Y          | Y    | 1                       | Swaminathan <i>et al</i> ., 2021   |
|                                             |                           |                      | N                            | PCR and sequence<br>analysis            | Y       | Y         | ND         | ND   | 1                       | Rimmer <i>et al.,</i> 2017         |
|                                             | Trichogaster lalius       | dwarf gourami        | N                            | PCR and sequence<br>analysis            | ND      | Y         | Y          | Y    | 1                       | Go & Whittington, 2006             |
| Osphronemidae                               |                           |                      | N                            | PCR and sequence<br>analysis            | ND      | Y         | Y          | Y    | 1                       | Sudthongkong <i>et al.</i> , 2002b |
|                                             | Trichopodus leerii        | pearl gourami        | N                            | PCR and sequence<br>analysis            | ND      | ND        | Y          | Y    | 1                       | Jeong <i>et al</i> ., 2008a        |
|                                             |                           | Pour goulaini        | N                            | PCR and sequence<br>analysis            | ND      | ND        | Y          | Y    | 1                       | Jeong <i>et al</i> ., 2008b        |
|                                             | Trichopodus<br>microlepis | moonlight gourami    | N                            | PCR and sequence<br>analysis            | ND      | ND        | Y          | Y    | 1                       | Jeong <i>et al</i> ., 2008a        |
| Percichthyidae <i>Maccullochella peelii</i> | Maccullochella neelii     | Murray cod           | Е                            | PCR and sequence<br>analysis            | Y       | ND        | Y          | Y    | 1                       | Go & Whittington, 2006             |
|                                             | Murray cod                | N                    | PCR and sequence<br>analysis | Y                                       | ND      | Y         | Y          | 1    | Go <i>et al.</i> , 2006 |                                    |

| Family       | Scientific name                                   | Common name                        | Stage 1: Route  | Stage 2: Pathogen                            | Stage 3 | : Evidenc | e of infed | tion | Outcome         | References                         |
|--------------|---------------------------------------------------|------------------------------------|-----------------|----------------------------------------------|---------|-----------|------------|------|-----------------|------------------------------------|
|              |                                                   |                                    | of transmission | identification                               | А       | В         | С          | D    |                 |                                    |
|              |                                                   |                                    | N               | Nested PCR and<br>sequence analysis          | ND      | ND        | Y          | Y    | 1               | Nolan <i>et al.,</i> 2015          |
|              | Poecilia latipinna                                | sailfin molly                      | N               | Nested PCR, qPCR<br>and sequence<br>analysis | ND      | ND        | Y          | Y    | 1 <sup>10</sup> | Baoprasertkul & Kaenchan,<br>2019  |
|              |                                                   |                                    | N               | PCR and sequence<br>analysis                 | ND      | ND        | ND         | Y    | 2               | Zainathan <i>et al</i> ., 2017     |
| Poeciliidae  | Xiphophorus hellerii                              | green swordtail                    | N               | Nested PCR and<br>sequence analysis          | ND      | ND        | Y          | Y    | 1               | Nolan <i>et al.,</i> 2015          |
| Poecilidae   |                                                   |                                    | N               | PCR and sequence<br>analysis                 | ND      | ND        | ND         | Y    | 2               | Subramaniam <i>et al</i> ., 2014   |
|              | Xiphophorus<br>maculatus                          |                                    | N               | Nested PCR, qPCR<br>and sequence<br>analysis | ND      | ND        | Y          | Y    | 1               | Baoprasertkul & Kaenchan,<br>2019  |
|              |                                                   | southern platyfish                 | N               | PCR and sequence analysis                    | Y       | ND        | Y          | Y    | 1               | Jung-Schroers <i>et al</i> ., 2016 |
|              |                                                   |                                    | N               | Nested PCR and<br>sequence analysis          | ND      | ND        | Y          | Y    | 1               | Nolan <i>et al.,</i> 2015          |
| Sciaenidae   | Sciaenops ocellatus                               | red drum                           | N               | PCR and sequence<br>analysis                 | Y       | ND        | Y          | Y    | 1               | Oseko <i>et al.</i> , 2004         |
| Scideillude  | Sciaenops ocenatus                                |                                    | N               | PCR and sequence<br>analysis                 | Y       | ND        | Y          | Y    | 1               | Weng <i>et al</i> ., 2002          |
| Serranidae   | Epinephelus<br>fuscoguttatus♀ ×♂E.<br>lanceolatus | pearl gentian<br>grouper (hybrids) | N               | PCR and sequence analysis                    | Y       | Y         | Y          | Y    | 1               | Huang <i>et al</i> ., 2020         |
| Sinipercidae | Siniperca chuatsi                                 | Mandarin fish                      | N               | PCR and sequence<br>analysis                 | Y       | ND        | Y          | Y    | 1               | Tanaka <i>et al.</i> , 2014        |
|              |                                                   |                                    | N               | sequence analysis <sup>11</sup>              | Y       | Y         | Y          | Y    | 1               | He <i>et al</i> ., 2001            |
|              |                                                   |                                    |                 | Score 2                                      |         |           |            |      |                 |                                    |
| Cichlidae    | Mikrogeophagus                                    |                                    | N               | PCR and sequence<br>analysis                 | ND      | ND        | ND         | Y    | 2               | Subramaniam <i>et al.,</i> 2014    |
|              | ramirezi                                          |                                    | N               | PCR and sequence<br>analysis                 | ND      | ND        | ND         | Y    | 2               | Zainathan <i>et al</i> ., 2019     |

| Family         | Scientific name                      | Common name             | Stage 1: Route  | Stage 2: Pathogen                            | Stage 3 | : Evidenc | e of infec | tion | Outcome         | References                         |
|----------------|--------------------------------------|-------------------------|-----------------|----------------------------------------------|---------|-----------|------------|------|-----------------|------------------------------------|
|                |                                      |                         | of transmission | identification                               | Α       | В         | С          | D    |                 |                                    |
|                | Pterophyllum altum                   | deep angelfish          | N               | PCR and sequence<br>analysis                 | Y       | Y         | Y          | Y    | 2 <sup>12</sup> | Jung-Schroers <i>et al.</i> , 2016 |
| Helostomatidae | Helostoma<br>temminckii              | kissing gourami         | Ν               | PCR and sequence<br>analysis                 | ND      | ND        | ND         | Y    | 2               | Rimmer <i>et al</i> ., 2015        |
| Osphronemidae  | Trichopodus                          | three spot gourami      | N               | PCR and sequence<br>analysis                 | ND      | ND        | ND         | Y    | 2               | Zainathan <i>et al</i> ., 2017     |
| Sphronemidae   | trichopterus                         | tillee spot goulani     | N               | PCR and sequence<br>analysis                 | ND      | ND        | ND         | Y    | 3               | Rimmer <i>et al.</i> , 2015        |
|                | Poecilia sphenops                    | molly                   | N               | PCR and sequence<br>analysis                 | ND      | ND        | ND         | Y    | 2               | Zainathan <i>et al</i> ., 2017     |
| Poeciliidae    |                                      |                         | N               | PCR                                          | ND      | ND        | ND         | Y    | 3               | Rimmer <i>et al</i> ., 2015        |
|                | Xiphophorus variatus                 | variable platyfish      | N               | Nested PCR, qPCR<br>and sequence<br>analysis | ND      | ND        | Y          | Y    | 2 <sup>13</sup> | Baoprasertkul & Kaenchan<br>2019   |
| Sparidae       | Rhabdosargus sarba                   | goldlined<br>seabream   | N               | PCR and sequence analysis                    | ND      | ND        | ND         | Y    | 2               | Huang <i>et al.,</i> 2011          |
|                |                                      |                         |                 | Score 3                                      |         |           |            |      |                 |                                    |
|                | Alepes djedaba                       | shrimp scad             | N               | Nested PCR and<br>sequence analysis          | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007          |
|                | Caranx sexfasciatus                  | bigeye trevally         | Ν               | Nested PCR and<br>sequence analysis          | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007          |
| Coronaidoo     | Decapterus maruadsi                  | Japanese scad           | Ν               | Nested PCR and<br>sequence analysis          | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007          |
| Carangidae     | Scomberoides lysan                   | doublespotted queenfish | Ν               | Nested PCR and<br>sequence analysis          | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007          |
|                | Scomberoides tala                    | barred queenfish        | Ν               | Nested PCR and<br>sequence analysis          | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007          |
|                | Selaroides leptolepis                | yellowstripe scad       | Ν               | Nested PCR and<br>sequence analysis          | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007          |
| Clupeidae      | Konosirus punctatus                  | dotted gizzard<br>shad  | Ν               | Nested PCR and<br>sequence analysis          | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007          |
| Cynoglossidae  | Cynoglossus<br>sinicus <sup>14</sup> |                         | N               | Nested PCR and<br>sequence analysis          | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007          |

| Family         | Scientific name                | Common name                  | Stage 1: Route  | Stage 2: Pathogen                   | Stage 3 | : Evidenc | e of infec | tion | Outcome         | References                               |
|----------------|--------------------------------|------------------------------|-----------------|-------------------------------------|---------|-----------|------------|------|-----------------|------------------------------------------|
|                |                                |                              | of transmission | identification                      | A       | В         | С          | D    |                 |                                          |
| Cuprinido o    | Carassius auratus              | goldfish                     | N               | PCR and sequence<br>analysis        | ND      | ND        | ND         | Y    | 3 <sup>15</sup> | de Lucca Maganha <i>et al.</i> ,<br>2018 |
| Cyprinidae     | Cyprinus carpio                | common carp                  | N               | PCR and sequence<br>analysis        | ND      | ND        | ND         | Y    | 3 <sup>15</sup> | de Lucca Maganha <i>et al.</i> ,<br>2018 |
| Danionidae     | Danio albolineatus             | pearl danio                  | Ν               | PCR and sequence<br>analysis        | ND      | ND        | ND         | Y    | 3 <sup>15</sup> | de Lucca Maganha <i>et al.,</i><br>2018  |
| Engraulidae    | Thryssa mystax                 | moustached<br>thryssa        | Ν               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
| Haemulidae     | Plectorhinchus pictus          | trout sweetlips              | Ν               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
|                | Deveximentum<br>insidiator     | pugnose ponyfish             | Ν               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
| Leiognathidae  | Leiognathus<br>brevirostris    | shortnose ponyfish           | Ν               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
|                | Photopectoralis<br>bindus      | orangefin ponyfish           | Ν               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
|                | Lutjanus<br>argentimaculatus   | mangrove red<br>snapper      | Ν               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
| Lutianidae     | Lutjanus johnii                | John's snapper               | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
| Lujanidae      | Lutjanus russelli              | Russell's snapper            | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
|                | Lutjanus sanguineus            | humphead<br>snapper          | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
| Monacanthidae  | Paramonacanthus japonicus      | hair-finned<br>leatherjacket | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
| Denhronomida e | Macropodus                     | norodico fich                | N               | PCR and sequence<br>analysis        | ND      | ND        | ND         | Y    | 3 <sup>15</sup> | de Lucca Maganha <i>et al.</i> ,<br>2018 |
| Osphronemidae  | opercularis                    | paradise fish                | N               | PCR and sequence<br>analysis        | ND      | ND        | ND         | Y    | 3               | Kim <i>et a</i> l., 2010                 |
| Polynemidae    | Eleutheronema<br>tetradactylum | fourfinger threadfin         | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
| Sciaenidae     | Dendrophysa russelii           | goatee croaker               | N               | Nested PCR and sequence analysis    | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |

| Family         | Scientific name                  | Common name                       | Stage 1: Route  | Stage 2: Pathogen                   | Stage 3 | : Evidenc | e of infec | tion | Outcome         | References                               |
|----------------|----------------------------------|-----------------------------------|-----------------|-------------------------------------|---------|-----------|------------|------|-----------------|------------------------------------------|
|                |                                  |                                   | of transmission | identification                      | А       | В         | С          | D    |                 |                                          |
|                | Otolithes ruber                  | tigertooth croaker                | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
|                | Pennahia argentata               | silver croaker                    | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
|                | Pennahia<br>macrocephalus        | big-head pennah<br>croaker        | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
| Scombridae     | Scomberomorus commerson          | narrow-barred<br>Spanish mackerel | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
|                | Cephalopholis<br>boenak          | chocolate hind                    | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
|                | Epinephelus bleekeri             | duskytail grouper                 | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
| Serranidae     | Epinephelus<br>chlorostigma      | brownspotted<br>grouper           | Ν               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
|                | Epinephelus<br>fasciatomaculosus | rock grouper                      | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
|                | Epinephelus merra                | honeycomb<br>grouper              | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
| Serrasalmidae  | Pygocentrus nattereri            | red piranha                       | N               | PCR and sequence<br>analysis        | ND      | ND        | ND         | Y    | 3 <sup>15</sup> | de Lucca Maganha <i>et al</i> .,<br>2018 |
| Siganidae      | Siganus<br>canaliculatus         | rabbitfish                        | Ν               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al</i> ., 2007                |
| Stromateidae   | Pampus argenteus                 | silver pomfret                    | Ν               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
| Synodontidae   | Saurida elongata                 | slender lizardfish                | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
| Syphyraenidae  | Sphyraena forsteri               | bigeye barracuda                  | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
| Ferapontidae   | Pelates<br>quadrilineatus        | fourline grunter                  | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
| i eraponiluae  | Terapon jarbua                   | Jarbua terapon                    | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |
| Fetraodontidae | Lagocephalus<br>spadiceus        | Half-smooth<br>golden pufferfish  | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3               | Wang <i>et al.,</i> 2007                 |

| Family        | Scientific name                        | Common name          | Stage 1: Route  | Stage 2: Pathogen                   | Stage 3 | : Evidenc | e of infec | tion | Outcome | References               |
|---------------|----------------------------------------|----------------------|-----------------|-------------------------------------|---------|-----------|------------|------|---------|--------------------------|
|               |                                        |                      | of transmission | identification                      | А       | В         | С          | D    |         |                          |
|               | Takifugu<br>alboplumbeus <sup>14</sup> |                      | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3       | Wang <i>et al.,</i> 2007 |
|               | Takifugu<br>xanthopterus               | yellowfin pufferfish | N               | Nested PCR and<br>sequence analysis | ND      | ND        | ND         | Y    | 3       | Wang <i>et al.,</i> 2007 |
|               |                                        |                      |                 | Not scored (NS)                     |         |           |            |      |         |                          |
| Centrarchidae | Micropterus<br>salmoides               | largemouth bass      | EI              | N                                   | ND      | Y         | Y          | ND   | NS      | He <i>et al</i> ., 2002  |
| Xencyprididae | Ctenopharyngodon<br>idella             | grass carp           | EI              | N                                   | ND      | ND        | ND         | ND   | NS      | He <i>et al.,</i> 2002   |

<sup>10</sup> Pathogen identification was not completed to the level of genogroup for this species. The *ad hoc* Group included this study as supporting evidence.

<sup>11</sup> PCR was not performed in this study. The authors cloned DNA fragments for sequencing.

- <sup>12</sup> The assessed study included two different species of angelfish and the molecular analysis was performed on pool tissues that included gill tissue. As a result the *ad hoc* Group determined the evidence was not sufficient for a final assessment of '1' and assessed this species as an overall score of '2'.
- <sup>13</sup> Only one study was available for assessment and only one fish within that study showed clinical signs. The *ad hoc* Group determined that the evidence from the single fish was not sufficient for a final assessment of a '1'. As a result the *ad hoc* Group assessed this species as an overall score of a '2'.

<sup>14</sup> No common name was available on FAOTerm or www.fishbase.se.

<sup>15</sup> The findings from this study were obtained from wild surveys of multiple fish species. The *ad hoc* Group had concerns about possible cross contamination resulting from this sampling methodology. As a result the *ad hoc* Group assessed the evidence provided from this study as a score of '3'.

#### Table 7: Assessments for TRBIV genogroup

| Family        | Scientific name      | Common name   | Stage 1: Route  | Stage 2: Pathogen            | Stage 3: | Evidenc | e of infec | tion | Outcome | References                |
|---------------|----------------------|---------------|-----------------|------------------------------|----------|---------|------------|------|---------|---------------------------|
|               |                      |               | of transmission | identification               | А        | В       | С          | D    |         |                           |
|               | Score 1              |               |                 |                              |          |         |            |      |         |                           |
| Cichlidae     | Astronotus ocellatus | Oscar         | N               | PCR and sequence<br>analysis | ND       | Y       | Y          | Y    | 1       | Koda <i>et al</i> ., 2018 |
| Latidae       | Lates calcarifer     | barramundi    | N               | PCR and sequence<br>analysis | Y        | ND      | Y          | Y    | 1       | Tsai <i>et al</i> ., 2020 |
| Osphronemidae | Trichogaster lalius  | dwarf gourami | N               | PCR and sequence<br>analysis | Y        | ND      | Y          | Y    | 1       | Go <i>et al.</i> , 2016   |

| Family          | Scientific name              | Common name             | Stage 1: Route  | Stage 2: Pathogen                       | Stage 3 | : Evidenc | ce of infec | tion | Outcome         | References                 |
|-----------------|------------------------------|-------------------------|-----------------|-----------------------------------------|---------|-----------|-------------|------|-----------------|----------------------------|
|                 |                              |                         | of transmission | identification                          | А       | В         | С           | D    |                 |                            |
|                 |                              |                         | N               | PCR and sequence<br>analysis            | Y       | Y         | ND          | ND   | 1               | Rimmer <i>et al.,</i> 2015 |
| Paralichthyidae | Paralichthys<br>olivaceus    | bastard halibut         | N               | PCR and sequence<br>analysis            | Y       | Y         | Y           | Y    | 1               | Jung <i>et al</i> ., 2016  |
| Scophthalmidae  | almidae Scophthalmus maximus | Turbot                  | rbot P          |                                         | ND      | ND        | Y           | Y    | 1               | Shi <i>et al</i> ., 2010   |
|                 |                              |                         | N               | N <sup>17</sup>                         | Y       | ND        | Y           | Y    | NS              | Shi <i>et al</i> ., 2004   |
|                 |                              |                         |                 | Score 2                                 |         |           |             |      |                 |                            |
|                 | Cleithracara maronii         | keyhold cichlid         | N               | PCR and sequence<br>analysis            | ND      | Y         | ND          | ND   | 2               | Koda <i>et al</i> ., 2018  |
| Cichlidae       | Pterophyllum scalare         | freshwater<br>angelfish | N               | PCR, sequence and phylogenetic analyses | ND      | ND        | Y           | Y    | 1 <sup>18</sup> | Go <i>et al.</i> , 2016    |
| Olegnathidae    | Oplegnathus<br>fasciatus     | barred knifejaw         | N               | PCR and sequence analysis               | ND      | ND        | ND          | Y    | 2               | Song <i>et al</i> ., 2008  |
| Osphronemidae   | Trichopodus<br>trichopterus  | three spot gourami      | Ν               | PCR and sequence<br>analysis            | ND      | Y         | ND          | ND   | 2               | Koda <i>et al.,</i> 2018   |

<sup>16</sup> Virus isolated later sequenced in Shi et *al.*, 2010.

<sup>17</sup> Complete genome virus isolated by Shi *et al.*, 2004.

<sup>18</sup> Only one study was available for assessment and only one fish within that study showed clinical signs. The *ad hoc* Group determined that the evidence from the single fish was not sufficient for a final assessment of a '1'. As a result, the *ad hoc* Group assessed this species as an overall score of a '2'.

### Table 8: Assessments for Megalocytivirus (excluding SDDV)

| Family     | Scientific name  | Common name               | Stage 1: Route  | Stage 2: Pathogen | Stage 3: | Evidenc | e of infec | tion | Outcome | References                     |  |
|------------|------------------|---------------------------|-----------------|-------------------|----------|---------|------------|------|---------|--------------------------------|--|
|            |                  |                           | of transmission | identification    | А        | В       | С          | D    |         |                                |  |
| Score 1    |                  |                           |                 |                   |          |         |            |      |         |                                |  |
|            | D                | eudocaranx white trevally | N               | IFAT              | Y        | ND      | Y          | Y    | 1       | Kawakami & Nakajima, 2002      |  |
|            | dentex           |                           | N               | IFAT              | Y        | ND      | Y          | Y    | 1       | Matsuoka <i>et al</i> ., 1996  |  |
| Carangidae | uemex            |                           | N               | IFAT              | Y        | ND      | Y          | Y    | 1       | Nakajima <i>et al.</i> , 1995b |  |
|            | Seriola dumerili | greater amberjack         | N               | IFAT              | Y        | ND      | Y          | Y    | 1       | Kawakami & Nakajima, 2002      |  |

| Family             | Scientific name                                | Common name             | Stage 1: Route  | Stage 2: Pathogen         | Stage 3 | : Evidend | ce of infec | tion | Outcome         | References                               |
|--------------------|------------------------------------------------|-------------------------|-----------------|---------------------------|---------|-----------|-------------|------|-----------------|------------------------------------------|
|                    |                                                |                         | of transmission | identification            | А       | В С       |             | D    |                 |                                          |
|                    |                                                |                         | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Matsuoka <i>et al</i> ., 1996            |
|                    |                                                |                         | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Nakajima <i>et al.</i> , 1995b           |
|                    |                                                |                         | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
|                    | Seriola lalandi                                | goldstripe              | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Matsuoka <i>et al</i> ., 1996            |
|                    |                                                | amberjack               | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Nakajima <i>et al.</i> , 1995b           |
|                    | Seriola<br>quinqueradiata x<br>Seriola lalandi | Buri-hira hybrid        | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
|                    | Trachinotus blochii                            | snubnose                | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
|                    | Trachinolus biochii                            | pompano                 | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Matsuoka <i>et al</i> ., 1996            |
|                    | Trachurus isnanisus                            | Japanese jack           | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
|                    | Trachurus japonicus                            | mackerel                | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Matsuoka <i>et al</i> ., 1996            |
| 0                  | Oinelle, aussetete                             | largescale              | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
| Girellidae         | Girella punctata                               | blackfish               | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Matsuoka <i>et al</i> ., 1996            |
|                    | Parapristipoma                                 | abiatan amant           | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
|                    | trilineatum                                    | chicken grunt           | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Matsuoka <i>et al</i> ., 1996            |
| Haemulidae         | Plectorhinchus cinctus                         | crescent sweetlips      | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
| Lethrinidae        | Lethrinus<br>haematopterus                     | Chinese emperor         | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
|                    | Lethrinus nebulosus                            | spangled emperor        | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
| Mugilidae          | Mugil cephalus                                 | Flathead grey<br>mullet | N               | PCR, TEM and<br>IFAT      | Y       | Y         | Y           | Y    | 1               | Gibson-Kueh <i>et al</i> ., 2004         |
| Develiebthy vide e | Paralichthys                                   | bestend belikut         | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
| Paralichthyidae    | olivaceus                                      | bastard halibut         | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Matsuoka <i>et al</i> ., 1996            |
| Pleuronectidae     | Verasper variegatus                            | spotted halibut         | N               | IFAT                      | Y       | ND        | Y           | Y    | 1               | Kawakami & Nakajima, 2002                |
|                    |                                                |                         | N               | Nested PCR, qPCR          | ND      | ND        | Y           | Y    | 1 <sup>19</sup> | Baoprasertkul & Kaenchan, 2019           |
| Poeciliidae        | Poecilia reticulata                            | guppy                   | N               | PCR and sequence analysis | ND      | ND        | ND          | Y    | 2 <sup>20</sup> | Zainathan <i>et al</i> ., 2019           |
|                    |                                                |                         | N               | PCR and sequence analysis | ND      | ND        | ND          | Y    | 3 <sup>20</sup> | de Lucca Maganha <i>et al.</i> ,<br>2018 |

| Family         | Scientific name                  | Common name                  | Stage 1: Route  | Stage 2: Pathogen            | Stage 3 | : Evidend | e of infec | tion | Outcome         | References                        |
|----------------|----------------------------------|------------------------------|-----------------|------------------------------|---------|-----------|------------|------|-----------------|-----------------------------------|
|                |                                  |                              | of transmission | identification               | А       | В         | С          | D    |                 |                                   |
| Procatopodidae | Poropanchax<br>normani           | Norman's lampeye             | N               | PCR and sequence<br>analysis | Y       | Y         | Y          | Y    | 1               | Sudthongkong <i>et al.,</i> 2002b |
| Rachycentridae | Rachycentron canadum             | cobia                        | Ν               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 2002         |
|                | Scomber japonicus                | chub mackerel                | N               | IFAT                         | Y       | Y ND      |            | Y    | 1               | Kawakami & Nakajima, 2002         |
|                | Scomberomorus<br>niphonius       | Japanese Spanish<br>mackerel | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 2002         |
| Scombridae     |                                  |                              | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 2002         |
|                | Thunnus orientalis <sup>21</sup> | Pacific bluefin tuna         | N               | IFAT                         | Y       | Y         | ND         | ND   | 1               | Nakajima <i>et al</i> ., 1998c    |
|                |                                  |                              | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Matsuoka <i>et al.</i> , 1996     |
| _              |                                  | Hong Kong                    | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 2002         |
|                | Epinephelus akaara               | grouper                      | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Matsuoka <i>et al.</i> , 1996     |
|                |                                  |                              | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 200          |
|                | Epinephelus awoara               | yellow grouper               | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Matsuoka <i>et al.</i> , 1996     |
|                | Epinephelus bruneus              | longtooth grouper            | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 2002         |
|                | , ,                              | orange-spotted<br>grouper    | N               | IFAT                         | Ŷ       | ND        | Y          | Ŷ    | 1               | Kawakami & Nakajima, 200          |
|                | Epinephelus coioides             |                              | N               | PCR and sequence analysis    | ND      | Y         | Y          | ND   | 2 <sup>22</sup> | Ma <i>et al</i> ., 2012           |
| Serranidae     |                                  |                              | N               | PCR and sequence analysis    | ND      | ND        | ND         | Y    | 2 <sup>20</sup> | Huang <i>et al.,</i> 2011         |
|                |                                  |                              | N and E         | PCR and sequence<br>analysis | ND      | ND        | ND         | Y    | 2 <sup>22</sup> | Lu <i>et al.,</i> 2005            |
|                | Epinephelus<br>fuscoguttatus     | brown-marbled<br>grouper     | Ν               | PCR and IFAT                 | Y       | Y         | Y          | Y    | 1               | Gibson-Kueh <i>et al</i> ., 2004  |
|                | Epinephelus                      | Malabar grouper              | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 200          |
|                | malabaricus                      | inaiabai gioupei             | N               | PCR                          | Y       | Y         | Y          | Y    | 1               | Danayadol <i>et al</i> ., 1997    |
|                | Epinephelus                      | convict grouper              | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 200          |
|                | septemfasciatus                  | - 3 3.0 apor                 | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Matsuoka <i>et al</i> ., 1996     |
|                |                                  | yellowback                   | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 200          |
| Sparidae       | Dentex tumifrons <sup>23</sup>   | seabream                     | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Matsuoka <i>et al.,</i> 1996      |
|                |                                  |                              | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Nakajima <i>et al</i> ., 1995b    |
| Tetraodontidae | Takifugu rubripes                | tiger pufferfish             | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Kawakami & Nakajima, 200          |

| Family         | Scientific name                     | Common name              | Stage 1: Route  | Stage 2: Pathogen            | Stage 3 | : Evidend | e of infec | tion | Outcome         | e References                             |
|----------------|-------------------------------------|--------------------------|-----------------|------------------------------|---------|-----------|------------|------|-----------------|------------------------------------------|
|                |                                     |                          | of transmission | identification               | А       | В         | С          | D    |                 |                                          |
|                |                                     |                          | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Matsuoka <i>et al.,</i> 1996             |
|                |                                     |                          | N               | IFAT                         | Y       | ND        | Y          | Y    | 1               | Nakajima <i>et al</i> ., 1995b           |
|                |                                     |                          |                 | Score 2                      |         |           |            |      |                 |                                          |
| Osphronemidae  | Betta splendens                     | siamese fighting<br>fish | N               | PCR and sequence<br>analysis | ND      | ND        | Y          | Y    | 2 <sup>24</sup> | Baoprasertkul & Kaenchan<br>2019         |
| Poeciliidae    | Poecilia velifera                   | sail-fin molly           | N               | PCR and sequence<br>analysis | ND      | ND        | Y          | Y    | 2 <sup>24</sup> | Baoprasertkul & Kaenchan<br>2019         |
|                |                                     |                          | ·               | Score 3                      | ·       |           | ·          | ·    |                 | ·                                        |
| Characidae     | Moenkhausia costae                  | tetra fortune            | N               | PCR                          | ND      | ND        | ND         | Y    | 3               | de Lucca Maganha <i>et al.</i> ,<br>2018 |
| Cobitidae      | Misgurnus<br>anguillicaudatus       | pond loach               | N               | PCR                          | ND      | ND        | ND         | Y    | 3               | de Lucca Maganha <i>et al</i> .,<br>2018 |
| Hemiodontidae  | Hemiodus gracilis <sup>25</sup>     |                          | N               | PCR                          | ND      | ND        | ND         | Y    | 3               | de Lucca Maganha <i>et al.</i> ,<br>2018 |
| Loricariidae   | Hypostomus plecostomus              | suckermouth<br>catfish   | N               | PCR                          | ND      | ND        | ND         | Y    | 3               | de Lucca Maganha <i>et al.</i> ,<br>2018 |
| Osphronemidae  | Trichogaster labiosa                | thick lipped<br>gourami  | Ν               | PCR                          | ND      | ND        | ND         | Y    | 3               | Rimmer <i>et al</i> ., 2015              |
| Osteoglossidae | Arapaima gigas                      | araipama                 | N               | PCR                          | ND      | ND        | ND         | Y    | 3               | de Lucca Maganha <i>et al.</i> ,<br>2018 |
| Pangasiidae    | Pangasianodon<br>hypothalymus       | striped catfish          | Ν               | PCR                          | ND      | ND        | ND         | Y    | 3               | de Lucca Maganha <i>et al.</i> ,<br>2018 |
| Pomacanthidae  | Pomacanthus<br>navarchus            | bluegirdled<br>anglefish | N               | PCR                          | ND      | ND        | ND         | Y    | 3               | de Lucca Maganha <i>et al</i> .,<br>2018 |
| Serrasalmidae  | Serrasalmus<br>gibbus <sup>25</sup> |                          | N               | PCR                          | ND      | ND        | ND         | Y    | 3               | de Lucca Maganha <i>et al</i> .,<br>2018 |
|                |                                     |                          |                 | Not scored (NS)              |         |           |            |      |                 |                                          |
| Cichlidae      | Apistogramma<br>cacatuoides         | cockatoo cichlid         | N               | N <sup>26</sup>              | ND      | ND        | Y          | ND   | NS              | Nolan <i>et al</i> ., 2015               |
| Serranidae     | Cromileptes altivelis               | humpback grouper         | EI              | N <sup>27</sup>              | Y       | Y         | Y          | Y    | NS              | Mahardika <i>et al</i> ., 2004           |

<sup>19</sup> Pathogen identification was not completed to the level of genogroup for this species.

- <sup>20</sup> This study was assessed at the level of the ISKNV genogroup but the *ad hoc* Group determined the evidence supported susceptibility at the level of infection with *Megalocytivirus*. As a result, the genogroup level assessments are included within the infection with *Megalocytivirus* assessment table.
- <sup>21</sup> Prior to 1999 bluefin tuna (*Thunnus thynnus*) and Pacific bluefin tuna (*Thunnus orientalis*) were considered to be one species, collectively called bluefin tuna (*Thunnus thynnus*). Collette *et al.*, 1999 suggested separation of the species and it is recognised as such in www.fishbase.se. Nakajima *et al.*, 1998c and Matsuoka et al., 1996 were published prior to 1999, and Kawakami & Nakajima, 2002 was published when the species had just been proposed. Based on the sampling locations in these three studies, and the geographic distribution of Pacific bluefin tuna (*Thunnus orientalis*), the *ad hoc* Group determined the species included in these studies to be Pacific bluefin tuna (*Thunnus orientalis*).
- <sup>22</sup> This study was assessed at the level of the RSIV genogroup but the *ad hoc* Group determined the evidence supported susceptibility at the level of infection with *Megalocytivirus*. As a result, the genogroup level assessments are included within the infection with *Megalocytivirus* assessment table.
- <sup>23</sup> On www.fishbase.se, *Dentex tumifrons* (yellowback seabream) is the accepted taxonomy. *Evynnis japonica* (crimson seabream) is considered an invalid synonym.
- <sup>24</sup> Only one study was available for assessment and only one fish within that study showed clinical signs. The *ad hoc* Group determined that the evidence from the single fish was not sufficient for a final assessment of a '1'. As a result, the *ad hoc* Group assessed this species as an overall score of a '2'.
- <sup>25</sup> No common name was available on FAOTerm or www.fishbase.se.
- <sup>26</sup> Histology alone was used for identification of the pathogen.
- <sup>27</sup> Infected fish were PCR positive but sequence analysis was not undertaken to confirm virus identification.

#### **Assessment Table Key**

- N: Natural infection
- E: Experimental (non-invasive)
- EI: Experimental invasive
- Y: Demonstrates criterion is met
- N: Criterion is not met
- ND: Not determined
- NS: Not scored

#### 5. Naming convention for susceptible species

The scientific names of the species are in accordance with <u>www.fishbase.se</u>.

The common names of fish species are in accordance with FAOTERM (<u>http://www.fao.org/faoterm/collection/faoterm/en/</u>). Where the common fish name was not found in FAOTERM, the naming was done in accordance with <u>https://www.fishbase.se</u>.

#### 6. General Comments

The *ad hoc* Group agreed to focus initially on studies published from 2000 onwards, when molecular testing was available. Papers published in earlier years were referred to when necessary to increase confidence of an assessment, when no recent paper was available for the assessment of a specific host species, or to assess susceptibility to infection with ISKNV species viruses (RSIV, ISKNV and TRBIV genogroups). When necessary to corroborate pathogen identification, the *ad hoc* Group:

- a) contacted authors of the studies or Reference Laboratory experts to further describe pathogen identification methods, or
- b) utilized molecular information from parallel or subsequent studies on the same source population.

The *ad hoc* Group agreed that while the ideal situation to categorize a fish species as susceptible was the presence of two papers with a score of '1', a single strong study scoring '1' was also sufficient to conclude susceptibility of a species in the absence of conflicting evidence. A study was considered strong if there were multiple fish examined and multiple lines of evidence (e.g. temporal or geographic separation, or different challenge experiments) within the study as well as no inconsistencies. Consequently, additional studies were still reviewed to check for any supporting or conflicting evidence. When additional papers were identified but the *ad hoc* Group did not feel that they were necessary to assess as the species had already been determined as susceptible by other studies, these studies were included in the list of references.

#### 7. Listing of Susceptible species at a taxonomic ranking of Genus or Higher

The *ad hoc* Group completed the assessments of susceptible species but did not have sufficient time to determine if Article 1.5.9. was applicable for infection with *Megalocytivirus*. The *ad hoc* Group noted that no species were assessed as a '4' with evidence of non-susceptibility.

The *ad hoc* Group agreed to request guidance from the Aquatic Animals Commission for the review of listing of susceptible species at the taxonomic ranking of Genus or higher.

The *ad hoc* Group identified several studies where the species was only identified to the level of genus. In these cases, the *ad hoc* Group assessed the species to the level of genus in case this information was of assistance in the application of Article 1.5.9. This information is provided in Table 9 below.

| Family               | Scientific name   | Stage 1: Route  | Stage 2: Pathogen identification             | Stage 3: | Evidence | e of infect | ion | Outcome         | Assessed for                               | References                       |
|----------------------|-------------------|-----------------|----------------------------------------------|----------|----------|-------------|-----|-----------------|--------------------------------------------|----------------------------------|
|                      |                   | of transmission |                                              | А        | В        | С           | D   |                 |                                            |                                  |
|                      | ·                 | ·               |                                              | Sc       | ore 1    |             |     |                 | ·                                          | ·                                |
| Cichlidae            | Pterophyllum sp.  | N               | Nested PCR, qPCR<br>and sequence<br>analysis | ND       | ND       | Y           | Y   | 1               | <i>Megalocytivirus</i><br>(excluding SDDV) | Baoprasertkul & Kaenchar<br>2019 |
|                      |                   | Ν               | IFAT                                         | Y        | ND       | Y           | Y   | 1               | Megalocytivirus<br>(excluding SDDV)        | Nakajima <i>et al</i> ., 1995b   |
| l ata alabraaida a   | Lateolabrax sp.   | Ν               | IFAT                                         | Y        | ND       | Y           | Y   | 1               | Megalocytivirus<br>(excluding SDDV)        | Matsuoka <i>et al.</i> , 1996    |
| Lateolabracidae Late | e Laleolabrax sp. | Ν               | IFAT                                         | Y        | ND       | Y           | Y   | 1               | Megalocytivirus<br>(excluding SDDV)        | Kawakami & Nakajima,<br>2002     |
|                      |                   | N               | PCR and sequence<br>analysis                 | Y        | ND       | Y           | Y   | 1               | RSIV (genogroup)                           | Jeong <i>et al.</i> , 2003       |
| Comonidos            | Frizerbelus er    | N               | PCR and sequence<br>analysis                 | ND       | ND       | Y           | Y   | 1               | <i>Megalocytivirus</i><br>(excluding SDDV) | Fusianto <i>et al</i> ., 2021    |
| Serranidae           | Epinephelus sp.   | N               | PCR and sequence<br>analysis                 | Y        | Y        | Y           | Y   | 1               | ISKNV (genogroup)                          | Chao <i>et al</i> ., 2004        |
|                      |                   |                 |                                              | Sc       | ore 2    |             |     |                 |                                            |                                  |
| Cichlidae            | Cichlasoma sp.    | N               | Nested PCR, qPCR<br>and sequence<br>analysis | ND       | ND       | Y           | Y   | 2 <sup>26</sup> | <i>Megalocytivirus</i><br>(excluding SDDV) | Baoprasertkul & Kaenchar<br>2019 |
|                      | Symphysodon sp.   | N               | PCR                                          | ND       | ND       | ND          | Y   | 2 <sup>26</sup> | <i>Megalocytivirus</i><br>(excluding SDDV) | Baoprasertkul & Kaenchar 2019    |
| Osphronemidae        | Trichogaster sp.  | N               | PCR and sequence<br>analysis                 | ND       | ND       | Y           | Y   | 2 <sup>26</sup> | Megalocytivirus<br>(excluding SDDV)        | Baoprasertkul & Kaenchar 2019    |

Only one study was available for assessment. The evidence provided was assessed by the *ad hoc* Group as having met the criteria for susceptibility and was scored as a '1'. However, the *ad hoc* Group was unable to find any additional studies or corroborative evidence within the study, and determined that this study alone was not sufficient for a final assessment of a '1'. As a result, the *ad hoc* Group assessed this species as an overall score of a '2'.

### Assessment Table Key

N: Natural infection

E: Experimental (non-invasive)

EI: Experimental invasive

Y: Demonstrates criterion is met

N: Criterion is not met

ND: Not determined

NS: Not scored

#### 8. References

BAOPRASERTKUL, P. & KAENCHAN, N. (2019). Distribution and detection of Megalocytivirus in ornamental fish in Thailand. *Journal of Fisheries and Environment*, **43(1)**, 11-24.

BERMUDEZ, R., LOSADA, A.P., AZEVEDO, A.M., GUERRA-VARELA, J., PÉREZ-FERNÁNDEZ, D., SÁNCHEZ, L., PADRÓS, F., NOWAK, B. & QUIROGA, M.I. (2018). First description of a natural infection with spleen and kidney necrosis virus in zebrafish. *Journal of Fish Diseases*, **41(8)**, 1283-1294.

CHAO, C-B., CHEN, C-Y., LAI, Y-Y., LIN, C-S. & HUANG, H-T. (2004). Histological, ultrastructural, and in situ hybridization study on enlarged cells in the grouper *Epinephelus hybrids* infected with grouper iridovirus in Taiwan (TGIV). *Diseases of Aquatic Organisms*, **58**, 127–142.

CHEN, M.H., HUNG, S.W., CHANG, C.H., CHEN, P.Y., LIN, C.C., HSU, T.H., CHENG, C.F., LIN, S.L., TU, C.Y., TSANG, C.L., LIN, Y.H. & WANG, W.S. (2013). Red sea bream iridovirus infection in marble goby (Bleeker, *Oxyeleotris marmoratus*) in Taiwan. *African Journal of Microbiology Research*, **7(12)**, 1009-1014.

CHEN, X.H., LIN, K.B. & WANG, X.W. (2003). Outbreaks of an iridovirus disease in maricultured large yellow croaker, *Larimichthys crocea* (Richardson), in China. *Journal of Fish Diseases*, **26**, 615-619.

COLLETTE, B.B. (1999). Mackerels, molecules, and morphology. French Ichthyological Society, 149-164.

DANAYADOL, Y., DIREKBUSARAKOM, S., BOONYARATPALIN, S., MIYAZAKI, T.& MIYATA, M. (1997). Iridovirus infection in brown-spotted grouper (*Epinephelus malabaricus*) cultured in Thailand. In: *Flegel TW, MacRae IH (eds). Diseases in Asian Aquaculture III, FHS/AFS, Manila*. pp. 67-72.

DE LUCCA MAGANHA, S. R., CARDOSO, P.H.L., BALIAN, S. DE C., ALMEIDA-QUEIROZ, S. R., FERNANDES, A.M. & DE SOUSA, R. L. (2018). Molecular detection and phylogenetic analysis of megalocytivirus in Brazilian ornamental fish. *Archives of Virology*, **163**, 2225–2231.

DO, J.W., CHA, S.J., KIM, J.S., AN, E.J., PARK, M.S., KIM, J.W., KIM, Y.C., PARK, M.A. & PARK, J.W. (2005). Sequence variation in the gene encoding the major capsid protein of Korean fish iridoviruses. *Archives of Virology*, **150**, 351-359.

DO, J.W., MOON, C.H., KIM, H.J., KO, M.S., KIM, S.B., SON, J.H., KIM, J.S., AN, E.J., KIM, M.K., LEE, S.K., HAN, M.S., CHAS, J., PARK, M.S., PARK, M.A., KIM, Y.C., KIM, J.W. & PARK, J.W. (2004). Complete genomic DNA sequence of rock bream iridovirus. *Virology*, **325**, 351–363.

DONG, Y., WENG, S., HE, J.& DONG, C. (2013). Field trial tests of FKC vaccines against RSIV genotype Megalocytivirus in cage-cultured mandarin fish (*Siniperca chuatsi*) in an inland reservoir. *Fish and Shellfish Immunology* **35**, 1598-1603.

DONG, C., WENG, S., LUO, Y., HUANG, M., AI, H., YIN, Z. & HE, J. (2010). A new megalocytivirus from spotted knifejaw, *Oplegnathus punctatus*, and its pathogenicity to freshwater mandarinfish, *Siniperca chuatsi*. *Virus Research*, **147**, 98–106.

FIGUEIREDO, H. C. P., TAVARES, G. C., DORELLA, F.A., ROSA, J. C. C., MARCELINO, S. A. C., PIEREZAN, F. & PEREIRA, F. L. (2021). First report of infectious spleen and kidney necrosis virus in Nile tilapia in Brazil. *Transboundary and Emerging Diseases*, **2021**,1–8.

FUSIANTO, C., HICK, P.M., MURWANTOKO, HERLAMBANG, A., WHITTINGTON, R.J. & BECKER, J.A. (2021). Outbreak investigation attributes Infectious spleen and kidney necrosis virus as a necessary cause of a mortality epidemic in farmed grouper (*Epinephelus spp.*) in Bali, Indonesia. *Aquaculture Reports*, **20**, 100723.

GIBSON-KUEH, S., NGOH-LIM, G.H., NETTO, P., KURITA, J., NAKAJIMA, K. & NG, M.L. (2004). A systematic iridoviral disease in mullet, *Mugil cephalus* L. and tiger grouper, *Epinephelus fuscoguttatus* Forsskal: a first report and study. *Journal of Fish Diseases*, **27**, 693–699.

GO, J., WALTZEK, T.B., SUBRAMANIAM, K., YUN, S.C., GROFF, J.M., ANDERSON, I.G., CHONG, R., SHIRLEY, I., SCHUH, J.C.L., HANDLINGER, J.H., TWEEDIE, A. & WHITTINGTON, R.J. (2016). Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. *Virology*, **291**, 126–139.

GO, J., LANCASTER, M., DEECE, K., DHUNGYEL, O. & WHITTINGTON, R.J. (2006). The molecular epidemiology of iridovirus in Murray cod (*Maccullochella peelii peelii*) and dwarf gourami (*Colisa lalia*) from distant biogeographical regions suggests a link between trade in ornamental fish and emerging iridoviral diseases. *Molecular and Cellular Probes*, **20**, 212–222.

GO, J. & WHITTINGTON, R. (2006). Experimental transmission and virulence of a megalocytivirus (Family Iridoviridae) of dwarf gourami (*Colisa Ialia*) from Asia in Murray cod (*Maccullochella peelii peelii*) in Australia. *Aquaculture*, **258**, 140-149.

HE, J.G., ZENG, K., WENG, S.P. & CHAN, S-M. (2002). Experimental transmission, pathogenicity and physical-chemical properties of infectious spleen and kidney necrosis virus (ISKNV). *Aquaculture*, **204**, 11-24.

HE, J.G., DENG, M.S., WENG, P., LI, Z., ZHOU, S.Y., LONG, Q.X., WANG, X.Z. & CHANG, S.M. (2001). Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. *Virology*, **291**, 126–139.

HUANG, X., WEI, J., ZHENG, Q., ZHANG, Y., ZHU, W., LIU, J., HOU, Y., QIN Q. & HUANG, Y. (2021). Isolation, identification and genomic analysis of an ISKNV-type megalocytivirus from spotted knifejaw (*Oplegnathus punctatus*). *Aquaculture*, **532**, 736032.

HUANG, Y., CAI, S., JIAN, J., LIU G. & XU, L. (2020). Co-infection of infectious spleen and kidney necrosis virus and *Francisella sp*. in farmed pearl gentian grouper (*⊊Epinephelus fuscoguttatus* × ♂E. *lanceolatus*) in China - A case report. *Aquaculture*, **526**, 735409.

HUANG, S.M., TU, C., TSENG, C.H., HUANG, C.C., CHOU, C.C., KUO, H.C. & CHANG, S.K. (2011). Genetic analysis of fish iridoviruses isolated in Taiwan during 2001-2009. *Archives of Virology*, **156**, 1505-1515.

INOUYE, K., YAMANO, K., MAENO, Y., NAKAJIMA, K., MATSUOKA, M., WADA, Y. & SORIMACHI, M. (1992). Iridovirus infection of cultured red sea bream, *Pagrus major. Fish Pathology*, **27**, 19–27.

ITO, T. & KAWATO, Y. (2014). Potential infectivity of the virus re-isolated from surviving Japanese amberjack (*Seriola quinqueradiata*) after experimental infection with red sea bream iridovirus. *Bulletin of the European Association of Fish Pathologists*, **34 (1)**, 17-24.

ITO, T., YOSHIURA, Y., KAMAISHI, T., YOSHIDA, K.& NAKAJIMA, K. (2013). Prevalence of red sea bream iridovirus among organs of Japanese amberjack (*Seriola quinqueradiata*) exposed to cultured red sea bream iridovirus. *Journal of General Virology*, **94**, 2094-2101.

JEONG, J.B., KIM, H.Y., JUN, L.J., LYU, J.H., PARK, N.G., KIM, J.K. & JEONG, H.D. (2008a). Outbreaks and risks of infectious spleen and kidney necrosis virus disease in freshwater ornamental fishes. *Diseases of Aquatic Organisms*, **78**, 209-215.

JEONG, J., CHO, H., JUN, L., HONG, S., CHUNG, J. & JEONG, H. (2008b). Transmission of Iridovirus from freshwater ornamental fish (pearl gourami) to marine (rock bream). *Diseases of Aquatic Organisms*, **82(1)**, 27-36.

JEONG, J.B., JUN, L.J., YOO, M.H., KIM, M.S., KOMISAR, J.L. & JEONG, H.D. (2003). Characterization of the DANA nucleotide sequences in the genome of red sea bream iridoviruses isolated in Korea. *Aquaculture*, **220(1-4)**, 119-133.

JUNG, M. H., LEE, S. & JUNG, S. J. (2016). Low pathogenicity of flounder iridovirus (FLIV) and the absence of cross-protection between FLIV and rock bream iridovirus. *Journal of Fish Diseases*, **39(11)**, 1325-1333.

JUNG-SCHROERS, V., ADAMEK, M., WOHLSEIN, P., WEDEKIND, J. W.H.& STEINHAGEN, D., (2016). First outbreak of an infection with infectious spleen and kidney necrosis virus (ISKNV) in ornamental fish in Germany. *Diseases of Aquatic Organisms*, **119**, 239–244.

KAWAKAMI, H. & NAKAJIMA, K. (2002). Cultured fish species affected by red sea bream iridoviral disease from 1996-2000. *Fish Pathology*, **37(1)**, 45-47.

KAWATO, Y., CUMMINS, D.M., VALDETER, S., MOHR, P.G., ITO, T., MIZUNO, K., KAWAKAMI, H., WILLIAMS, L.M., CRANE, M.S.J., & MOODY, N.J.G. (2021a). Development of new real-time PCR assays for detecting Megalocytivirus across multiple genotypes. *Fish Pathology*, **56(4)**, 177-188.

KAWATO, Y., MEKATA, T., INADA, M. & ITO, T. (2021b). Application of Environmental DNA for Monitoring Red Sea Bream Iridovirus at a Fish Farm. *Microbiology Spectrum*, **9(2)**, 1-11. <u>https://doi.org/10.1128/Spectrum.00796-21</u>

KAWATO, Y., MOHR, P.G., CRANE, M.S.J., WILLIAMS, L.M., NEAVE, M.J., CUMMINS, D.M., DEARNLEY, M., CRAMERI, S., HOLMES, C., HOAD, J. & MOODY, N.J.G. (2020). Isolation and characterisation of an ISKNV-genotype megalocytivirus from imported angelfish *Pterophyllum scalare*. *Diseases of Aquatic Organisms*, **140**, 129–141.

KAWATO, Y., KIRYU, I., KAWAMURA, Y., & NAKAJIMA, K. (2017c). Red Sea Bream Iridoviral Disease in Hatchery-Reared Devil Stinger *Inimicus japonicus*. *Fish Pathology*, **52(4)**, 206–209.

KERDDEE, P., DINH-HUNG, N., THANH DONG, H., HIRONO, I., SOONTARA, C., AREECHON, N., SRISAPOOME, P. & KAYANSAMRUAJ, P. (2021). Molecular evidence for homologous strains of infectious spleen and kidney necrosis virus (ISKNV) genotype I infecting inland freshwater cultured Asian sea bass (*Lates calcarifer*) in Thailand. *Archives of Virology*, **166**, 3061–3074.

KIM, W.S., OH, M.J., KIM, J.O., KIM, D., JEON, C.H.& KIM, J.H. (2010). Detection of Megalocytivirus from imported tropical ornamental fish, paradise fish *Macropodus opercularis*. *Diseases of Aquatic Organisms*, **90**, 235-239.

KIM, Y.J., JUNG, S.J., CHOI, T.J., KIM, H.R., RAJENDRAN, K.V.& OH, M.J. (2002). PCR amplification and sequence analysis of irido-like virus infecting fish in Korea. *Journal of Fish Diseases*, **25**, 121-124.

KODA, S.A., SUBRAMANIAM, K., POUDER, D.B., YANONG, R.P., FRASCA, JR, S., POPOV, V.L. & WALTZEK, T.B. (2021). Complete genome sequences of infectious spleen and kidney necrosis virus isolated from farmed albino rainbow sharks *Epalzeorhynchos frenatum* in the United States. *Virus Genes*, **57**, 448-452.

KODA, S.A., SUBRAMANIAM, K., POUDER D.B., YANONG, R.P. & WALTZEK, T.B. (2019). Phylogenomic characterization of red seabream iridovirus from Florida pompano *Trachinotus carolinus* maricultured in the Caribbean Sea. *Archives of Virology*, **164**, 1209-1212.

KODA, S.A., SUBRAMANIAM, K., FRANCIS-FLOYD, R., YANONG, R.P., FRASCA, S. JR, GROFF, J.M., POPOV, V.L., FRASER, W.A., YAN, A., MOHAN, S. & WALTZEK, T.B. (2018). Phylogenomic characterization of two novel members of the genus Megalocytivirus from archived ornamental fish samples. *Diseases of Aquatic Organisms*, **130**, 11–24.

KURITA, J. & NAKAJIMA, K. (2012). Megalocytiviruses. Viruses, 4, 521-538.

KURITA, J., KAKAJIMA, K., HIRONO, I. & AOKI, T. (2002). Complete genome sequencing of red sea bream iridovirus (RSIV). *Fisheries Sci.*, **68** (suppl. II), 1113–1115.

LIU, L., LUJUN YUB, L., FUA, X., LINA, Q., LIANGA, H., NIUA, Y. & LIA, N. (2019). First report of megalocytivirus (*iridoviridae*) in cultured bluegill sunfish, *Lepomis macrochirus*, in China. *Microbial Pathogenesis*, **135**,103617.

LOPEZ-PORRAS, A., MORALES, J. A., ALVARADO, G., KODA, S.A., CAMUS, A., SUBRAMANIAM, K., WALTZEK, T. B. & SOTO, E. (2018). Red seabream iridovirus associated with cultured Florida pompano *Trachinotus carolinus* mortality in Central America. *Diseases of Aquatic Organisms*, **130**, 109–115.

LU, L., ZHOU, S.Y., CHEN, C., WENG, S.P., CHAN, S.-M. & HE, J.G. (2005). Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper, *Epinephelus coioides*. *Virology*, **339**, 81–100.

MA, H., XIE, J., WENG, S., ZHOU, T. & HE, J. (2012). Co-infection of megalocytivirus and viral nervous necrosis virus in a very severe mass mortality of juvenile orange-spotted groupers (*Epinephelus coioides*). *Aquaculture*, **358-359**, 170-175.

MAHARDIKA, K., ZAFRAN, YAMAMOTO, A. & MIYAZAKI, T. (2004). Susceptibility of juvenile humpback grouper *Cromileptes Altivelis* to grouper sleepy disease iridovirus (GSDIV). *Diseases of Aquatic Organisms*, **59**, 1-9.

MATSUOKA, S., INOUYE, K. & NAKAJIMA, K. (1996). Cultured fish species affected by red sea bream iridoviruses to red sea bream. *Fish Pathology*, **31**, 143-144.

MOHR, P.G., MOODY, N.J.G., WILLIAMS, L.M., HOAD, J., CUMMINS, D.M., DAVIES, K.R. & CRANE, M.S.J. (2015). Molecular confirmation of infectious spleen and kidney necrosis virus (ISKNV) in farmed and imported ornamental fish in Australia. *Diseases of Aquatic Organisms*, **116**, 103–110.

NAKAJIMA, K., MAENO, Y., YOKOYAMA, K., KAJI, C. & MANABE, S. (1998c). Antigen analysis of red sea bream iridovirus and comparison with other fish iridoviruses. *Fish Pathology*, **33**, 73–78.

NAKAJIMA, K., MAENO, Y., FUKUDOME, M., FUKUDA, Y., TANAKA, S., MATSUOKA, S. & SORIMACHI, M. (1995b). Immunofluorescence test for the rapid diagnosis of red sea bream iridovirus infection using monoclonal antibody. *Fish Pathology*, **30**, 115–119.

NI, S.-Z., WANG, Y.-J., JIA-BAO HU, J.-B., SHI, J., XU, Y., ZHOU, S.-M., LI, J.-J., HONG, B.-H. & QIAN, D. (2021). Identification, histopathology, and phylogenetic analysis of an iridovirus from cultivated silver pomfret in Zhejiang Province, East China. *Aquaculture*, **530**, 735619.

NOLAN, D., STEPHENS, F., CROCKFORD, M., JONES, J.B.& SNOW, M. (2015). Detection and characterization of viruses of the genus Megalocytivirus in ornamental fish imported into an Australian border quarantine premises an emerging risk to national biosecurity. *Journal of Fish Diseases*, **38**, 187-195.

OSEKO, N., THYE, C.T., PALANISAMY, V., MAENO, Y. & KURITA, J. (2004). Iridovirus isolated from diseased sea bass *Lates calcarifer* and red drum *Sciaenops ocellatus* causing mass mortality in Malaysia. In: *7th Asian Fisheries Forum*, Penang 2004.

RAMÍREZ-PAREDES, J.G., PALEY, R.K., HUNT, W., FEIST, S. W., STONE, D. M., FIELD, T. R., HAYDON, D. J., ZIDDAH, P. A., NKANSA, M., JAMES GUILDER, J., GRAY, J., DUODU, S., PECKU, E. K., AWUNI, J. A., WALLIS, T. S. & VERNER-JEFFREYS, D. W. (2020). First detection of infectious spleen and kidney necrosis virus (ISKNV) associated with massive mortalities in farmed tilapia in Africa. *Transboundary and Emerging Diseases*, **68**, 1550–1563.

RIMMER, A.E., WHITTINGTON, R.J., TWEEDIE, A. & BECKER, J.A., (2017). Susceptibility of a number of Australian freshwater fishes to dwarf gourami Iridovirus (infectious spleen and kidney necrosis virus). *Journal of Fish Diseases*, **40**, 293-310.

RIMMER, A.E., BECKER, J.A., TWEEDIE, A., LINTERMANS, M., LANDOS, M., STEPHENS, F. & WHITTINGTON, R.J. (2015). Detection of dwarf gourami Iridovirus (infectious spleen and kidney necrosis virus) in populations of ornamental fish prior to and after importation into Australia, with the first evidence of infection in domestically farmed platy (*Xiphophorus maculatus*). *Preventative Veterinary Medicine*, **122(1-2)**, 181-194.

SHI, C.Y., JIA, K.T., YANG, B. & HUANG, J. (2010). Complete genome sequence analysis of a Megalocytivirus (family *Iridoviridae*) associated with turbot mortality in China. *Virology Journal*, **7**, 159.

SHI, C.Y., WANG, Y.G., YANG, S.L., HUANG, J. & WANG, Q.Y. (2004). The first report of an iridovirus-like agent infection in farmed turbot, *Scophthalmus maximus*, in China. *Aquaculture*, **236**, 11–25.

SONG, J-Y., KITAMURA, S-I., JUNG, S-J., MIYADAI, T., TANAKA, S., FUKUDA, Y., KIM, S-R. & OH, M-J. (2008). Genetic variation and geographic distribution of megalocytiviruses. *Journal of Microbiology*, **46**, 29-33.

SRIWANAYOS, P., FRANCIS-FLOYD, R., STIDWORTHY, M.F., PETTY, B.D., KELLEY, K.& WALTZEK, T.B. (2013). Megalocytivirus infection in orbiculate batfish *Platax orbicularis*. *Diseases of Aquatic Organisms*,**105**,1-8.

SUBRAMANIAM, K., GOTESMAN, M., SMITH, C. E., STECKLER, N. K., KELLEY, K. L., GROFF, J. M. & WALTZEK, T. B. (2016). Megalocytivirus infection in cultured Nile tilapia *Oreochromis niloticus*. *Diseases of Aquatic Organisms*, **119**, 253–258.

SUBRAMANIAM, K., SHARIFF, M., A R OMAR, A.R., HAIR-BEJO, M. & ONG, B. (2014). Detection and molecular characterization of infectious spleen and kidney necrosis virus from major ornamental fish breeding states in Peninsular Malaysia. *Journal of Fish Diseases*, **37**, 609–618.

SUDTHONGKONG, C., MIYATA, M.& MIYAZAKI, T. (2002a). Viral DNA sequences of genes encoding the ATPase and the major capsid protein of tropical iridovirus isolates which are pathogenic to fishes in Japan, South China Sea and Southeast Asian countries. *Archives of Virology*, **147**, 2089-2109.

SUDTHONGKONG, C., MIYATA, M.& MIYAZAKI, T. (2002b). Iridovirus disease in two ornamental tropical freshwater fishes: African lampeye and dwarf gourami. *Diseases of Aquatic Organisms*, **48**, 163–173.

SUMITHRA, T.G. T.G., SHARMA, S.R.K, NEELIMA, L., DHANUTHA, N.R., JOSHY, A., ANUSREE, V.N., GAYATHRI, S., RAGHU, R.K., PRAVEEN, N.D., THOMAS, S. & RAJESH, K.M. (2022). Red sea bream iridovirus infection in cage farmed Asian sea bass (*Lates calcarifer*): insights into the pathology, epizootilogy and genetic diversity. *Aquaculture*, **548**, 737571.

SWAMINATHAN, T.R., JOHNY, T.K., NITHIANANTHAM, S.R., SUDHAGAR, A., PRADHAN, P.K., RAMACHANDRA, K.S.S., RESHMA, R. NAIR, R.R. & SOOD, N. (2022). A natural outbreak of infectious spleen and kidney necrosis virus threatens wild pearlspot, *Etroplus suratensis* in Peechi Dam in the Western Ghats biodiversity hotspot, India. *Transboundary and Emerging Diseases*, **2022**, 1–11.

SWAMINATHAN, T.R., RAJ, N.S., PREENA, P.G., PRADHAN, P.K., SOOD, N., KUMAR, R.G., ARUN SUDHAGAR, A. & SOOD, N.K. (2021). Infectious spleen and kidney necrosis virus-associated large scale mortality in farmed giant gourami, *Osphronemus goramy*, in India. *Journal of Fish Diseases*, **44**, 2043–2053.

TAKANO, T., MATSUYAMA, T., KAWATO, Y., SAKAI, T., KURITA, J., MATSUURA, Y., TERASHIMA, S., NAKAJIMA, K. & NAKAYASU, C. (2020). Identification of the epitope recognized by the anti-red sea bream iridovirus (RSIV) monoclonal antibody M10 using a phage display RSIV peptide library. *Fish Pathology*, **54**, 83–92.

TANAKA, N., IZAWA, T., KUWAMURA, M., HIGASHIGUCHI, N., KEZUKA, C., KURATA, O., WADA, S. & YAMATE, J. (2014). The first case of infectious spleen and kidney necrosis virus (ISKNV) infection in aquariummaintained mandarin fish, *Siniperca chuatsi* (Basilewsky), in Japan. *Journal of Fish Diseases*, **37**, 401-405.

TSAI, J.-M., HUANG, S.-L., & CHUNG-DA YANG, C.-D. (2020). PCR Detection and Phylogenetic Analysis of Megalocytivirus Isolates in Farmed Giant Sea Perch *Lates calcarifer* in Southern Taiwan. *Viruses*, **12**, 681.

WANG, Q., ZENG, W.W., LI, K.B., CHANG, O.Q., LIU, C., WU, G.H., SHI, C.B. & WU, S.Q. (2011). Outbreaks of an iridovirus in marbled sleepy goby, *Oxyeleotris marmoratus* (Bleeker), cultured in southern China. *Journal of Fish Diseases*, **34**, 399-402.

WANG, C.S., CHAO, S.Y., KU, C.C., WEN, C.M. & SHIH, H.H. (2009). PCR amplification and sequence analysis of the major capsid protein gene of megalocytiviruses isolated in Taiwan. *Journal of Fish Diseases*, **32**, 543-550.

WANG, Y.Q., LÜ, L., WENG, S.P., HUANG, J.N., CHAN, S.M. & HE, J.G. (2007). Molecular epidemiology and phylogenetic analysis of a marine fish infectious spleen and kidney necrosis viruslike (ISKNV-like) virus. *Archives of Virology*, **152**, 763–773.

WEBER, E.S. III, WALTZEK, T.B., YOUNG, D.A., TWITCHELL, E.L. GATES, A.E., BAGELLI, A., RISATTI, G.R., HEDRICK, R.P. & FRASCA JR., S. (2009). Systemic iridovirus infection in the Banggai cardinalfish (*Pterapogon kauderni* Koumans 1933). *Journal of Veterinary Diagnostic Investigation*, **21**, 306–320.

WENG, S.P., WANG, Y.Q., HE, J.G., DENG, M., LU, L., GUAN, H.J., LIU, Y.J. & CHAN, S-M. (2002). Outbreaks of an iridovirus in red drum, *Sciaenops ocellata* (L.), cultured in southern China. *Journal of Fish Diseases*, **25**, 681-685.

ZAINATHAN, S.C., BALARAMAN, D., AMBALAVANAN, L., MOORTHY, P.H., SURRIN KUMAR PALAKRISHNAN, S.K., & ARIFF, N. (2019). Molecular screening of infectious spleen and kidney necrosis virus in four species of Malaysian farmed ornamental fish. *Malays. Appl. Biol.* **48(1)**, 131–138.

ZAINATHAN, S.C., JOHAN, C.A.C., SUBRAMANIAM, N., AHMAD, A.A., HALIM, N.I.A., NORIZAN, N. & ARIFF, N. (2017). Detection and molecular characterization of Megalocytivirus strain ISKNV in freshwater ornamental fish from Southern Malaysia. *AACL Bioflux*, **10(5)**, 1098-1109.

ZHU, Z., DUAN, C., LI, Y., HUANG, C., WENG, S., HE, J. & DONG, C. (2021). "Pathogenicity and histopathology of infectious spleen and kidney necrosis virus genotype II (ISKNV-II) recovering from mass mortality of farmed Asian seabass, *Lates calcarifer*, in Southern China". *Aquaculture*, **534**, 736326.

Other references reviewed by the *ad hoc* Group but not referred to in the report above:

ARMSTRONG, R.D. & FERGUSON, H.W. (1989). Systemic viral disease of the chromide cichlid *Etroplus maculatus*. *Diseases of Aquatic Organisms*, **7**, 155–157.

CHOI, S.K., KWON, S.R., NAM, Y.K., KIM, S.K. & KIM, K.H. (2006). Organ distribution of red sea bream iridovirus (RSIV) DNA in asymptomatic yearling and fingerling rock bream (*Oplegnathus fasciatus*) and effects of water temperature on transition of RSIV into acute phase. *Aquaculture*, **256**, 23–26.

CHOU, H.Y., HSU, C.C. & PENG, T.Y. (1998). Isolation and characterization of a pathogenic iridovirus from cultured grouper (*Epinephelus sp.*) in Taiwan. *Fish Pathology*, **33**, 201-206.

CRANE, M.ST.J. & MOODY, N.J.G. (2016). Megalocytivirus Infections of Finfish. *Australia and New Zealand Standard Diagnostic Procedure*. Revision 2016.

DE GROOF, A., GUELEN, L., DEIJS, M., VAN DER WAL, Y., MIYATA, M., NG, K.S., VAN GRINSVEN, L., SIMMELINK, B., BIERMANN, Y., GRISEZ, L., VAN LENT, J., DE RONDE, A., CHANG, S.F., SCHRIER, C. & VAN DER HOEK, L. (2015). A Novel Virus Causes Scale Drop Disease in *Lates calcarifer. PLoS Pathology*, **11(8)**, e1005074.

FRASER, W. A., KEEFE, T.J. & BOLON, B. (1993). Isolation of an iridovirus from farm-raised gouramis (*Trichogaster trichopterus*) with fatal disease. *J Vet Diagn Invest*, **5**, 250-253.

GIBSON-KUEH, S., NETTO, P., NGOH-LIM, G.H., CHANG, S.F., HO, L.L., QIN, Q.W., CHUA, F.H.C., NG, M.L. & FERGUSON, H.W. (2003). The pathology of systemic iridoviral disease in fish. *Journal of Comparative Pathology*, **129**, 111-119.

HE, J.G., WANG, S.P., ZENG, K., HUANG, Z.J. & CHAN, S.M. (2000). Systemic disease caused by an iridovirus-like agent in cultured mandarinfish, *Siniperca chuatsi* (Basilewsky), in China. *Journal of Fish Diseases*, **23**, 219-222.

JEONG, J.B., KIM, H.Y., KIM, H.K., CHUNG, J.-K., KOMISAR, J.L. & JEONG, H.D. (2006). Molecular comparison of iridoviruses isolated from marine fish cultured in Korea and imported from China. *Aquaculture*, **255**, 105–116.

JEONG, J.B., PARK, K.H., KIM, H.Y., HONG, S.H., KIM, K.H., CHUNG, J., KOMISAR, J.L. & JEONG, H.D. (2004). Multiplex PCR for the diagnosis of red seabream iridoviruses isolated in Korea. *Aquaculture*, **235 (1-4)**, 139-152.

JIN, J.W., KIM, Y.C., HONG, S., KIM, M.S., JEONG, J.G. & JEONG, H.D. (2017). Cloning and expression analysis of innate immune genes from red sea bream to assess different susceptibility to megalocytivirus infection. *Journal of Fish Diseases*, **40(4)**, 583-595.

JOHAN, C.A.C. & ZAINATHAN, S.C. (2020). Megalocytiviruses in ornamental fish: A review. *Veterinary World*, **13**, 2565–2577.

JUNG, S.J. & OH, M.J. (2000). Iridovirus-like infection associated with high mortalities of striped beakperch, *Oplegnathus fasciatus* (Temminck et Schlegel), in southern coastal areas of the Korean peninsula. *Journal of Fish Diseases*, **23**, 223–226.

JUNG, S., MIYAZAKI, T., MIYATA, M., DANAYADOL, Y. & TANAKA, S. (1997). Pathogenicity of iridovirus from Japan and Thailand for the red sea bream *Pagrus major* in Japan, and histopathology of experimentally infected fish. *Fisheries Science*, **63**, 735–740.

KASORNCHANDRA, J. & KHONGPRADIT, R. (1997). Isolation and preliminary characterization of a pathogenic iridovirus in nursing grouper, *Epinephelus marabaricus*. *Diseases in Asian Aquaculture III, Flegel T.W. & MacRae I.H., eds. Manila, Philippines,* 61–66.

KAWATO, Y., SUBRAMANIAM, K., NAKAJIMA, K., WALTZEK, T. & WHITTINGTON, R. (2017a). Iridoviral diseases: red sea bream iridovirus and white sturgeon iridovirus. In: *Fish Viruses and Bacteria: Pathobiology and Protection*, Woo P.T.K., Cipriano, R.C., eds. CABI Publishing, Wallingford, 147–159.

KAWATO, Y., YAMASHITA, H., YUASA, K., MIWA, S. & NAKAJIMA, K. (2017b). Development of a highly permissive cell line from spotted knifejaw (*Oplegnathus punctatus*) for red sea bream iridovirus. *Aquaculture*, **473**, 291-298.

KURITA, J., NGOH-LIM, G.H., GIBSON-KUEH, S., DE LA PENA, L., CHUAH, T.T., PALAMISAMY, V., SANO, M., OSEKO, N., MAENO, Y. & NAKAJIMA, K. (2004). Phylogenetic analysis of red sea bream iridovirus-like viruses in Southeast Asia. *7th Asian Fisheries Forum 04 Abstracts*, Penang, Malaysia, 381.

KURITA, J., NAKAJIMA, K., HIRONO, I. & AOKI, T. (1998). Polymerase chain reaction (PCR) amplification of DNA of red sea bream iridovirus (RSIV). *Fish Pathology*, **33**, 17–23.

KUSUDA, R., NAGATO, K. & KAWAI, K. (1994). Characteristics of an iridovirus isolated from red sea bream, *Pagrus major. Suisanzoshoku*, **42**, 151–156.

LAI, Y.S., MURALI, S., JU, H.Y., WU, M.F., GUO, I.C., CHEN, S.C., FANG, K. & CHANG, C.Y. (2000). Two iridovirus-susceptible cell lines established from kidney and liver of grouper, *Epinephelus awoara* (Temminck & Schlegel), and partial characterization of grouper iridovirus. *Journal of Fish Disease*, **23(6)**, 379-388.

MCGROGAN, D.G., OSTLAND, V.E., BYRNE, P.J. & FERGUSON, H.W. (1998). Systemic disease involving an iridovirus-like agent in cultured tilapia, *Oreochromis niloticus* L. — a case report. *Journal of Fish Diseases*, **21**, 149–152.

MIYATA, M., MATSUNO, K., JUNG, S.J., DANAYADOL, Y. & MIYAZAKI, T. (1997). Molecular confirmation of infectious spleen and kidney necrosis virus (ISKNV) in farmed and imported ornamental fish in Australia. *Diseases of Aquatic Organisms*, **116**, 103–110.

MURALI, S., WU, M.F., GUO, I.C, CHEN, S.C. YANG, H.W & CHANG, C.Y. (2002). Molecular characterization and pathogenicity of a grouper iridovirus (GIV) isolated from yellow grouper, *Epinephelus awoara* (Temminck & Schlegel). *Journal of Fish Diseases*, **25**, 91–100.

NAKAJIMA, K. & KURITA, J. (2005). Red sea bream iridoviral disease. Uirusu, 55, 115–126.

NAKAJIMA, K., MAENO, Y., HONDA, A., YOKOYAMA, K., TOORIYAMA, T. & MANABE, S. (1999). Effectiveness of a vaccine against red sea bream iridoviral disease in a field trial test. *Diseases of Aquatic Organisms*, **36**, 73-75.

NAKAJIMA, K., INOUYE, K. & SORIMACHI, M. (1998a). Viral diseases in cultured marine fish in Japan. *Fish Pathology*, **33(4)**, 181-188.

NAKAJIMA, K & MAENO, Y. (1998b). Pathogenicity of Red Sea Bream Iridovirus and Other Fish Iridoviruses to Red Sea Bream. *Fish Pathology*, **33(3)**, 143-144.

NAKAJIMA, K., MAENO, Y., KURITA, J. & INUI, Y. (1997). Vaccination against red sea bream iridoviral disease in red sea bream. *Fish Pathology*, **32**, 205–209.

NAKAJIMA, K. & SORIMACHI, M. (1995a). Production of monoclonal antibodies against red sea bream iridovirus. *Fish Pathology*, **30**, 47–52.

NAKAJIMA, K. & SORIMACHI, M. (1994). Biological and physico-chemical properties of the iridovirus isolated from cultured red sea bream, *Pagrus major. Fish Pathology*, **29**, 29–33.

OSHIMA, S., HATA, J., HIRASAWA, N., OHTAKA, T., HIRONO, I., AOKI, T. & YAMASHITA, S. (1998). Rapid diagnosis of red sea bream iridovirus infection using the polymerase chain reaction. *Diseases of Aquatic Organisms*, **32**, 87–90.

OSHIMA, S., HATA, J., SEGAWA, C., HIRASAWA, N. & YAMASHITA, S. (1996). A method for direct DNA amplification of uncharacterized DNA viruses and for development of a viral polymerase chain reaction assay: Application to the red sea bream iridovirus. *Analytical Biochemistry*, **242**, 15–19.

PAPERNA, I., VILENKIN, M.& ALVES DE MATOS, A.P. (2001). Iridovirus infections in farm-reared tropical ornamental fish. *Diseases of Aquatic Organisms* **48**, 17–25.

PETTY, B.D. & FRASER, W.A. (2005). Viruses of pet fish. Veterinary Clinics of North America: Exotic Animal Practice, 8(1), 67-84.

QIN, Q.W., CHANG, S.F., NGOH-LIM, G.H., GIBSON-KUEH, S., SHI, C. & LAM, T.J. (2003). Characterization of a novel ranavirus isolated from grouper *Epinephelus tauvina*. *Diseases of Aquatic Organisms*, **53**, 1–9.

QIN, Q.W., LAM, T.J., SHEN, H., CHANG, S.F., NGOH, G.H. & CHEN, C.L. (2001). Electron microscopic observations of a marine fish iridovirus isolated from brown-spotted grouper, *Epinephelus tauvina*. *Journal of Virological Methods*, **98**, 17–24.

RAJA, K., AANAND, P., PADMAVATHY, S. & SAMPATHKUMAR, J.S. (2019). Present and future market trends of Indian ornamental fish sector. *International Journal of Fisheries and Aquatic Studies*, **7(2)**, 6-15.

RIMMER, A.E., BECKER, J.A., TWEEDIE, A. & WHITTINGTON, R.J. (2012). Development of a quantitative polymerase chain reaction (qPCR) assay for the detection of dwarf gourami iridoviruses (DGIV) and other megalocytiviruses and comparison with the Office International des Epizooties (OIE) reference protocol. *Fish Pathology*, **36(1)**, 38-39.

RODGER, H.D., KOBS, M., MACARTNEY, A. & FRERICHS, G.N. (1997). Systemic iridovirus infection in freshwater angelfish, *Pterophyllum scalare* (Lichtenstein). *Journal of Fish Diseases*, **20**, 69–72.

SANO, M., MINAGAWA, M. & NAKAJIMA, K. (2002). Multiplication of red sea bream iridovirus (RSIV) in experimentally infected grouper (*Epinephelus malabaricus*). *Fish Pathology*, **37**, 163-168.

SANO, M., MINAGAWA, M., SUGIYAMA, A. & NAKAJIMA, K. (2001). Susceptibility of Fish cultured in subtropical area of Japan to red sea bream iridovirus. *Fish Pathology*, **36(1)**, 38-39.

SAWAYAMA, E., KITAMURA, S.-I., NAKAYAMA, K., OHTA, K., OKAMOTO, H., OZAKI, A. & TAKAGI, M. (2019). Development of a novel RSIVD-resistant strain of red sea bream (*Pagrus major*) by marker-assisted selection combined with DNA-based family selection. *Aquaculture*, **506**, 188-192.

SHINMOTO, H., TANIJUCHI, K., IKAWA, T., KAWAI, K. & OSHIMA, S. (2009). Phenotypic diversity of infectious red sea bream iridovirus isolates from cultured fish in Japan. *Applied and Environmental Microbiology*, **75(11)**, 3535-3541.

SHIU, J-Y., HONG, J-R., KU, C-C. & WEN, C-M. (2018). Complete genome sequence and phylogenetic analysis of megaloctyivirus RSIV-Ku: A natural recombination infectious spleen and kidney necrosis virus. *Archives of Virology*, **163**, 1037-1042.

SONG, W.J., QIN, Q.W., QIU, J., HUANG, C.H., WANG, F. & HEW, C.L. (2004). Functional genomic analysis of Singapore grouper iridovirus: Complete sequence determination and proteomic analysis. *Journal of Virology*, **78**, 12576–12590.

SUBRAMANIAM, K., SHARIFF, M., OMAR, A.R. & HAIR-BEJO, M. (2012). Megalocytivirus infection in fish. *Reviews in Aquaculture*, **4**, 221-233.

WALKER, P.J. & WINTON, J.R. (2010). Emerging viral diseases of fish and shrimp. *Veterinary Research*, **41**, 51, 1-24.

WALTZEK, T.B., MARTY, G.D., ALFARO, M.E., BENNETT, W.R., GARVER, K.A., HAULENA, M., WEBER, E.S. & HEDRICK, R.P. (2012). Systemic iridovirus from threespined stickleback *Gasterosteus aculeatus* represents a new megalocytivirus sprecies (family Iridoviridae). *Diseases of Aquatic Organisms*, **98**, 41-56.

WANG, C.S., SHIH, H.H., KU, C.C. & CHEN, S.N. (2003). Studies on epizootic iridovirus infection among red sea bream, *Pagrus major* (Temminck & Schlegel), cultured in Taiwan. *Journal of Fish Diseases*, **26**, 127-133.

WEN, C.M. & HONG, J.R. (2016). Complete genome sequence of a giant sea perch iridovirus in Kaohsiung, Taiwan. *Genome Announcements*, **4**, e01759–e15.

WHITTINGTON, R.J., BECKER, J.A. & DENNIS, M.M. (2010). Iridovirus infections in finfish - critical review with emphasis on ranaviruses. *Journal of Fish Diseases*, **33(2)**, 95-122.

WHITTINGTON, R., TWEEDIE, A., DENNIS, M., BECKER, J. AND LANDOS, M. (2009). Aquatic Animal Health Subprogram: Optimisation of PCR Tests for Diagnosis of Megalocytivirus (Gourami Iridovirus) and Cyprinid herpesvirus 2 (Goldfish Herpesvirus). *FRDC Project No. 2007/007.* 

XU, X., ZHANG, L., WENG, S., HUANG, Z., LU, J., LAN, D., ZHONG, X., YU, X., XU, A. & HE, J. (2008). A zebrafish (*Danio rerio*) model of infectious spleen and kidney necrosis virus (ISKNV) infection. *Virology*, **376**, 1-12.

.../Annexes

#### Annex I. List of Participants

#### AD HOC GROUP ON SUSCEPTIBILITY OF FISH SPECIES TO INFECTION WITH WOAH LISTED DISEASES

April & November/December 2022

#### MEMBERS OF THE AD HOC GROUP

Dr Mark Crane (Chair) **CSIRO Honorary Fellow** Australian Centre for Disease Preparedness (ACDP) I CSIRO Geelong, AUSTRALIA

Dr. Chuanfu Dong School of life sciences, Sun Yat-sen University Guangzhou CHINA (People's Republic of)

Dr Lori Gustafson National Surveillance Unit College of veterinary Medicine and Life USDA/APHIS/VS/CEAH Fort Collins, UNITED STATES OF AMERICA CHINA (People's Republic of)

Dr Niels Jørgen Olesen

Technical University of Denmark, National Institute of Aquatic Resources, Lyngby, DENMARK

Dr Yasuhiko Kawato

**Fisheries Technology** Institute Japan Fisheries Research and Education Agency Minamiise JAPAN

#### REPRESENTATIVE OF THE AQUATIC ANIMAL HEALTH STANDARDS COMMISSION

Dr Prof. Hong Liu Animal and Plant Inspection and Quarantine **Technical Center** General Administration of Customs, Shenzhen City CHINA(People's Rep of)

#### WOAH HEADQUARTERS

**Dr Sophie St-Hilaire** 

City University of Hong Kong

Sciences

Hong Kong,

Dr Bernita Giffin Scientific Coordinator for Aquatic Animal Health Standards Department AAC.Secretariat@woah.org

Dr Kathleen Frisch Scientific Coordinator for Aquatic Animal Health Standards Department AAC.Secretariat@woah.org

#### Annex II: Terms of Reference

# WOAH *AD HOC* GROUP ON SUSCEPTIBILITY OF FISH SPECIES TO INFECTION WITH WOAH LISTED DISEASES

#### Paris, April & November/December 2022

#### Background

Chapter 1.5. Criteria for listing species as susceptible to infection with a specific pathogenic agent, of the *Aquatic Code*, adopted in 2014, provides criteria for determining which host species are listed as susceptible in Article X.X.2. of each disease-specific chapter in the *Aquatic Code*. The list of susceptible species included in Article X.X.2. of all disease-specific chapters are being progressively reviewed against the criteria in Chapter 1.5.

The *ad hoc* Group on Susceptibility of fish species to infection with WOAH listed diseases has undertaken assessments for all of the WOAH listed diseases of fish, except for infection with red sea bream iridovirus, tilapia lake virus and infection with *Aphanomyces invadans* (epizootic ulcerative syndrome).

#### Purpose

The *ad hoc* Group on Susceptibility of fish species to infection with WOAH listed diseases will undertake assessments in accordance with criteria described in Chapter 1.5. for infection with red sea bream iridovirus.

Given that infectious spleen and kidney necrosis virus (ISKNV) is a closely related virus in the Genus *Megalocytivirus*, and that there is likely to be an overlap with RSIV in its epidemiology, pathology and diagnostic test methods, the *ad hoc* Group should also undertake assessments of susceptible species to ISKNV in its work.

#### **Terms of Reference**

- 1) Consider evidence required to satisfy the criteria in Chapter 1.5.
- 2) Review relevant literature documenting susceptibility of species for infection with red sea bream iridovirus and infection with infectious spleen and kidney necrosis virus.
- 3) Undertake assessments in accordance with Article 1.5.3. for potential host species in order to determine susceptibility to infection with red sea bream iridovirus and infection with infectious spleen and kidney necrosis virus.
- 4) Based on the assessments, propose a list of susceptible species for infection with red sea bream iridovirus and infection with infectious spleen and kidney necrosis virus in accordance with Article 1.5.7.
- 5) Based on the assessments, propose a list of species with incomplete evidence for susceptibility for infection with red sea bream iridovirus and infection with infectious spleen and kidney necrosis virus in accordance with Article 1.5.8.

#### Expected outputs of the ad hoc Group

- 1) Propose a list of susceptible species for inclusion in Article 10.8.2. in the Aquatic Code.
- 2) Propose a list of species with incomplete evidence for susceptibility for inclusion in Section 2.2.2. of the *Aquatic Manual.*
- 3) Propose a list of susceptible species and species with incomplete evidence for susceptibility for infection with ISKNV.
- 4) Draft a report for consideration by the Aquatic Animal Health Standards Commission at its September 2022 meeting.

#### © World Organisation for Animal Health (WOAH), 2023

This document has been prepared by specialists convened by the World Organisation for Animal Health (WOAH). Pending adoption by the World Assembly of Delegates, the views expressed herein can only be construed as those of these specialists.

All WOAH publications are protected by international copyright law. Extracts may be copied, reproduced, translated, adapted or published in journals, documents, books, electronic media and any other medium destined for the public, for information, educational or commercial purposes, provided prior written permission has been granted by the WOAH.

The designations and denominations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the WOAH concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries.

The views expressed in signed articles are solely the responsibility of the authors. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by the WOAH in preference to others of a similar nature that are not mentioned.