REPORT OF THE ELECTRONIC *AD HOC* GROUP ON TILAPIA LAKE VIRUS¹
February to August 2018

The OIE electronic *ad hoc* Group on Tilapia lake virus (TiLV) was established in November 2017 to evaluate published and unpublished methods for detection of TiLV, describe the level of validation of each method and determine additional validation requirements, recommend any additional assays that may need to be developed, facilitate the sourcing and distribution of well-characterised positive control material for method evaluation, and implement inter-laboratory comparability studies.

This report covers activities and achievements of the *ad hoc* Group from February to August 2018. The list of participants and Terms of Reference are presented in Annexes I and II.

Activities, achievements and next steps

Following a request by the Aquatic Animal Health Standards Commission, in May 2018 countries who had reported the presence of Tilapia lake virus (TiLV) were contacted by the OIE Director General requesting them to consider providing positive TiLV control material to the OIE Collaborating Centre for New and Emerging Diseases and Diagnostic Test Validation, at the CSIRO Australian Animal Health Laboratory (AAHL) for molecular test evaluation and inter-laboratory comparability studies.

The *ad hoc* Group was pleased to report that to date, material containing infectious TiLV has been received (or is in the process of being organised) from Chinese Taipei, Israel, Peru and Thailand.

The *ad hoc* Group’s work is currently focused on point 5. of the Terms of Reference which is being led by the OIE Collaborating Centre for New and Emerging Diseases, Australian Animal Health Laboratory, Australia, i.e.

TOR 5: Develop and implement a work plan for inter-laboratory comparability studies

Aim: To develop and implement a plan for investigation of the inter-laboratory comparability of the following assays for the molecular detection of TiLV:

1. Conventional semi-nested assay (RT-nPCR) described by Dong *et al.* (2017).
2. Real-time SYBR assay (RT-qPCR) described by Tattiyapong *et al.* (2017).
3. Real-time probe-based assay (RT-qPCR) which is unpublished and has been provided by the *ad hoc* Group member Dr Prof. Hong Liu.

¹ Note: This *ad hoc* Group report reflects the views of its members and may not necessarily reflect the views of the OIE. This report should be read in conjunction with the September 2018 report of the Aquatic Animal Health Standards Commission because this report provides its considerations and comments. It is available at http://www.oie.int/en/standard-setting/specialists-commissions-working-ad-hoc-groups/aquatic-animals-commission-reports/meeting-reports/
Methodology:

Receipt of materials at AAHL

Material to be used in the inter-laboratory comparability studies will be sourced by ad hoc Group members and sent to the CSIRO Australian Animal Health Laboratory (AAHL) in Geelong, Australia. Material Transfer Agreements will be established to ensure the material supplied is only used to support the activities of the ad hoc Group. On arrival at AAHL, the presence of TiLV in the materials will be confirmed by conventional PCR and sequence analysis, the virus will be amplified in E-II cell cultures and stored in liquid nitrogen.

Amplification of TiLV and generation of positive control material

TiLV will be amplified in E-II cell cultures and the end-point dilution determined using 10-fold dilutions with each of the TiLV molecular tests to ensure the material is suitable for preparation of the inter-laboratory comparability panel. This will also enable comparison of the analytical sensitivity (ASe) of the molecular assays. Clarified cell culture supernatant will be gamma-irradiated at 50kGy and tested to determine the degree of degradation of the TiLV RNA by the gamma-irradiation. Previous work done at AAHL with other finfish viruses suggests this will not render the material unable to be used.

If the TiLV molecular tests perform as expected preliminary assessment of analytical specificity (ASp) will be undertaken for each of the TiLV molecular tests using a nucleic acid extracted from a number of finfish viruses held at AAHL.

Inter-laboratory comparability panel

The inter-laboratory comparability panel would consist of 20 positive and 10 negative samples that would include:

1. 10-fold dilution series (7 samples) to enable estimates of efficiency of real-time molecular assays;
2. Strong positive (at least 2 samples);
3. Medium positive (at least 2 samples);
4. Weak positive (at least 2 samples);
5. 10-fold dilution of medium and low positive;
6. Positive samples with various viral concentrations to make up the 20 positive samples;
7. Negative samples consisting of supernatant of uninfected cell culture (10 samples).

Material will be provided as a gamma-irradiated cell culture supernatant with 50µL extracted and tested.

Not explicitly stating the planned composition of the panel is not to act as a test of the capability of the ad hoc Group member’s laboratories, it is simply that it is good laboratory practice to provided “blinded” samples to participants undertaking this kind of test evaluation. Multiple aliquots of each of the different samples will be stored.

Homogeneity testing will be undertaken using 10 aliquots of each different concentration, with a coefficient of variation of <5% indicating homogeneity of the samples. Additional stability testing, using three aliquots of each sample will be undertaken at -20°C, 4°C and 22°C, at Day 0, Day 7 and Day 14, to make sure there are no stability issues with transport delays of the inter-laboratory comparability panel to ad hoc Group member’s laboratories. Stability testing will also be undertaken when all laboratories have reported results to check the stability of stored aliquots at AAHL.

Participating laboratories will receive the samples as numbered tubes to test them blind with panels tested at least three times. Results will be reported back to the Chair of the ad hoc Group for collation and reporting back as uncoded results to the participating laboratories for discussion. Use of duplicate samples and 10-fold dilutions of samples will enable statistical analysis to determine repeatability and reproducibility.

Initially, the inter-laboratory comparability panel will use different dilutions of a single TiLV isolate. When additional TiLV isolates are obtained from different geographical locations, ASp and ASe will be determined.
Depending of the results new assays may need to be designed if not all isolates are detected by one, or more, of the molecular tests. Regardless, a second inter-laboratory comparability panel could be prepared as described above, but using several different geographical isolates of TiLV, to provide greater confidence on the robustness and repeatability of the tests.

The inter-laboratory comparability panel will also be provided to laboratories outside the ad hoc Group if these laboratories provide TiLV material can be used to support the activities of the ad hoc Group.

Result reporting

A result reporting sheet will be prepared which will request as much information as possible about the testing process in each laboratory. Information will include extraction methods/kits used and volume extracted, and volume eluted, molecular test reagents/kits used and reaction volume and template volume used and result recoding and interpretation, including threshold for real-time tests and cut-off determination. This will be provided prior to the shipment of the inter-laboratory comparability panel and a draft will be provided to ad hoc Group members for comment. It is highly desirable to have all testing and reporting submitted within one month of receipt of the panel.

Next steps

The ad hoc Group will continue their work and will report back progress to the next meeting of the Aquatic Animals Commission in February 2019.

References:

.../Annexes
Annex I

REPORT OF THE OIE AD HOC GROUP ON TILAPIA LAKE VIRUS

List of participants

MEMBERS OF THE ELECTRONIC AD HOC GROUP

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Axel Colling</td>
<td>Chair, OIE Collaborative Centre for Diagnostic Test Validation Science,</td>
<td>Axel.Colling@csiro.au</td>
</tr>
<tr>
<td></td>
<td>Po bag 24 Geelong VIC 3220, Australia</td>
<td></td>
</tr>
<tr>
<td>Dr Prof. Hong Liu</td>
<td>Director, OIE SVC reference laboratory, NACA regional resource centre,</td>
<td>hadongntu@gmail.com</td>
</tr>
<tr>
<td></td>
<td>State Key laboratory of aquatic animal health, Shenzhen Custom, China</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General administrations of China Customs, Room 907, Shenzhen, China</td>
<td></td>
</tr>
<tr>
<td>Dr Dong Thanh</td>
<td>Researcher, Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand</td>
<td>hadongntu@gmail.com</td>
</tr>
<tr>
<td>Dr Sergio Hernan Marshall Gonzalez</td>
<td>Pontificia Universidad Católica de Valparaiso, Av. Brazil 2950, Valparaiso, Chile</td>
<td>sergio.marshall@pucv.cl @pucv.cl</td>
</tr>
<tr>
<td>Dr Mona Dverdal Jansen</td>
<td>Veterinarian, Researcher, PhD, Norwegian Veterinary Institute, PO Box 750 Sentrum, Norway</td>
<td>mona-dverdal.jansen@vetinst.no</td>
</tr>
<tr>
<td>Dr Nick Moody</td>
<td>Senior Research Scientist, Team Leader – Aquatic Diagnostic Capability,</td>
<td>nick.moody@csiro.au</td>
</tr>
<tr>
<td></td>
<td>CSIRO AAHL Fish Diseases Laboratory, 5 Portarlington Rd, East Geelong VIC 3219, Australia</td>
<td></td>
</tr>
<tr>
<td>Dr Henrique César Pereira Figueiredo</td>
<td>Head, National Reference Laboratory for Aquatic Animal Diseases/MAPA, Federal University of Minas Gerais, Brazil</td>
<td>figueiredoh@yahoo.com</td>
</tr>
<tr>
<td>Dr Navad Davidovich</td>
<td>Veterinary Services and Animal Health Ministry, P.O. Box 12, Bet Dagan 5025001, Israel</td>
<td>Nadavd@moag.gov.il</td>
</tr>
<tr>
<td>Dr Avi Eldar</td>
<td>Head, Fish Disease Laboratory, The Veterinary Services-Kimron Vet. Inst, Agricultural Ctr. POB 50250, Israel</td>
<td>eldar@moag.gov.il</td>
</tr>
</tbody>
</table>

REPRESENTATIVE OF THE AQUATIC ANIMAL HEALTH STANDARDS COMMISSION

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Edmund Peeler</td>
<td>(Vice-President), Group Manager Aquatic Pest & Pathogens, CEFAS, Barrack Road, Weymouth, Dorset, DT4 8UB, UK</td>
<td>ed.peeler@cefas.co.uk</td>
</tr>
</tbody>
</table>
Annex I (contd)

OIE HEADQUARTERS

Dr Stian Johnsen
Chargé de mission
Standards Department
s.johnsen@oie.int
Annex II

Terms of Reference

The electronic ad hoc Group should:

1. Critically review the available literature regarding detection methods for TiLV and any unpublished methods that may also be available.

2. Provide recommendations on additional method development requirements.

3. Provide recommendations on method validation requirements.

4. Determine sources of well-characterised viable and non-viable positive control material for use in method evaluation and implementation in laboratories.

5. Develop a work plan for inter-laboratory comparability studies.

6. Draft a report by the end of January 2018 to be considered by the Commission when they meet in February 2019.

Ad hoc Group members should be familiar with Chapter 1.2. Criteria for listing aquatic animal diseases and the use of relevant glossary definitions in the Aquatic Code, and with the principles and methods of validation of diagnostic essays for infectious diseases in Chapter 1.1.2. of the Aquatic Manual.